87 research outputs found

    Towards simultaneous meta-modeling for both the output and input spaces in the context of design shape optimization using asynchronous high-performance computing

    No full text
    ECCOMAS PhD Olympiads 2013International audience. In this paper, we propose a simultaneous meta-modeling protocol for both input and output spaces. We perform a reparametrization of the input space using constrained shape interpolation by introducing the concept of an α-manifold of admissible meshed shapes. The output space is reduced using constrained Proper Orthogonal Decomposition. By simultaneously using meta-modeling for both spaces, we facilitate interactive design space exploration for the purpose of design. The proposed approach is applied to several industrial problems

    Effect of different types of fibers on the microstructure and the mechanical behavior of Ultra-High Performance Fiber-Reinforced Concretes

    No full text
    International audienceThis study investigates the effect of adding different types of fibers on the microstructure and the mechanical behavior of cementitious composites, in particular on UHPC. These fibers were distinguished mainly by their differing nature (steel, mineral and synthetic), their dimensions (macroscopic or microscopic), and their mechanical properties. The microstructure of the specimens was examined by using SEM observation and by measuring the porosity, the intrinsic permeability and the P-wave velocity. The mechanical behavior under loading has been studied using a uni-axial compression test which combines the gas permeability and the acoustic emission (AE) measurement. This work focuses on the cracking process under mechanical loading. The experimental results show that the fiber has a relatively slight influence on the compressive strength and elastic modulus of concrete, except for the steel fiber which improves the strength because of its intrinsic rigidity. However, The addition of fiber significantly reduces the lateral strain at peak loading and increases the threshold of initial cracking (σk-ci) and that of unstable cracking (σk-pi). Therefore, the fibers clearly restrain the cracking process in concrete under the mechanic loadin

    Determination of Regional Scale Evapotranspiration of Texas from NOAA - AVHRR Satellite

    Get PDF
    Evapotranspiration (ET) is defined as the combined loss of water by evaporation from soil and transpiration from plants. Depending on the geographic location, 60-80% of total annual precipitation is lost in the form of evapotranspiration. Since ET accounts for a major portion of water lost to the atmosphere, accurate estimation is essential for the success of hydrologic modeling studies. ET is estimated using climatic data like net radiation, air temperature, wind velocity, vapor pressure deficit and relative humidity obtained from the nearest weather stations. However, interpolating ET using data obtained from a point data source to derive regional ET could introduce errors of large magnitude. During the last two decades, GIS and Remote Sensing have evolved as an indispensable tool for monitoring natural resources. Due to the availability of spatially distributed data from satellites, and adopting GIS principles, accurate determination of ET is possible. The present study aims at deriving spatially distributed ET using NOAA-AVHRR satellite data

    Research in the iSchools: An Examination

    Get PDF
    The iSchool movement is not merely a reaction of the information science community to the criticism that there is a mismatch between LIS education and needs of the information job market but also represents the growing recognition that there is a need to elevate the status of the discipline in the higher education system to a level on par with other professions/disciplines. This paper attempts to construct the domain of interest to the iSchools by profiling the ongoing and recent research in the iSchools. The profiling is carried out by examining the publications emanating from six iSchools. The findings suggest that there is as yet no clear construct of what constitutes the domain of interest of iSchools. The research profiles of these iSchools also appear to differ significantly. The study also suggests the emergence of certain new information specialities

    Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis

    Get PDF
    Zinc and its alloys are important industrial materials due to their high corrosion resistance, low cost and good ductility. However, the characterization of these materials remains a difficult task due to their highly anisotropic behavior, the latter being due to the influence of microstructural effects, i.e. loading orientation-dependent activation of different families of slip systems and subsequent texture evolution, rendering the development of a reliable material model considerably difficult. A micro-mechanical approach based on polycrystal plasticity would better describe the physical mechanisms underlying the macroscopic behavior. This improved model should ostensibly improve the comprehension of the mechanical behavior, compared to the macroscopic approach using solely phenomenological anisotropy models along with a prohibitively large number of experiments required to identify the material parameters. In this paper, a multi-scale Visco-Plastic Self-Consistent (VPSC) approach is used. It is based on a micro-scale model calibrated by microstructural and deformation mechanism information based on Electron Back-Scattered Diffraction (EBSD) to describe the macroscopic anisotropic mechanical response during sheet metal deformation. The critical resolved shear stress (CRSS) as well as the micro-scale crystal parameters are obtained by an inverse analysis comparing the simulated and experimental results in terms of obtained tensile curves along three different directions. In order to obtain a global solution for the identification, we then use the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) genetic algorithm to the inverse problem. We validate our approach by comparing the simulated and experimental textures and activated slip systems. Finally, the identified mechanical parameters are used to investigate the anisotropy of the alloy and predict its formability by determining the corresponding R-values and Hill yield coefficients

    Modeling Water-Quality Loads to the Reservoirs of the Upper Trinity River Basin, Texas, USA

    Get PDF
    The Upper Trinity River Basin (TRB) is the most populated river basin and one of the largest water suppliers in Texas. However, sediment and nutrient loads are reducing the capacity of reservoirs and degrading water quality. The objectives of this study are to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for ten study watersheds within the Upper TRB in order to assess nutrient loads into major reservoirs in the basin and to predict the effects of point source elimination and urbanization on nutrient loads through scenario analyses. SWAT performed reasonably well for the current condition except for two out of five tributaries in the Eagle Mountain watershed and total phosphorous OPEN ACCESS Water 2015, 7 5690 in Richland-Chambers. The impacts of simulated scenarios varied within watersheds. Point-source elimination achieved reductions ranging from 0.3% to 24% in total phosphorus and 1% to 56% in total nitrogen received by the reservoirs. Population and development projections were used to examine the impacts of urbanization on each watershed. Projected urbanization in 2030 had large effects on simulated total phosphorus loads in some watersheds, ranging from a reduction of 1% to an increase of 111%. Projected urbanization also affected simulated total nitrogen loads, from a reduction of 3% to an increase of 24%. One limitation of this study is the lack of long-term, up-to-date water quality data due to discontinued water-quality monitoring stations. Although careful considerations were given to the adjustment of parameter values reflecting various aspects of the nutrient processes, further data collection will enhance modeling study for assessment of these watersheds’ water resources and environmental problem

    Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma

    Get PDF
    The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3′-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility

    Discussion on a possible neutrino detector located in India

    Get PDF
    We have identified some important and worthwhile physics opportunitites with a possible neutrino detector located in India. Particular emphasis is placed on the geographical advantage with a stress on the complimentary aspects with respect to other neutrino detectors already in operation.Comment: 9 pages; arXiv copy of published proceedings contributio

    Polarity control in WSe2 double-gate transistors

    Get PDF
    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics
    corecore