46 research outputs found

    Excess mortality during the warm summer of 2015 in Switzerland.

    Get PDF
    QUESTION UNDER STUDY: In Switzerland, summer 2015 was the second warmest summer for 150 years (after summer 2003). For summer 2003, a 6.9% excess mortality was estimated for Switzerland, which corresponded to 975 extra deaths. The impact of the heat in summer 2015 in Switzerland has not so far been evaluated. METHODS: Daily age group-, gender- and region-specific all-cause excess mortality during summer (June-August) 2015 was estimated, based on predictions derived from quasi-Poisson regression models fitted to the daily mortality data for the 10 previous years. Estimates of excess mortality were derived for 1 June to 31 August, at national and regional level, as well as by month and for specific heat episodes identified in summer 2015 by use of seven different definitions. RESULTS: 804 excess deaths (5.4%, 95% confidence interval [CI] 3.0‒7.9%) were estimated for summer 2015 compared with previous summers, with the highest percentage obtained for July (11.6%, 95% CI 3.7‒19.4%). Seventy-seven percent of deaths occurred in people aged 75 years and older. Ticino (10.3%, 95% CI -1.8‒22.4%), Northwestern Switzerland (9.5%, 95% CI 2.7‒16.3%) and Espace Mittelland (8.9%, 95% CI 3.7‒14.1%) showed highest excess mortality during this three-month period, whereas fewer deaths than expected (-3.3%, 95% CI -9.2‒2.6%) were observed in Eastern Switzerland, the coldest region. The largest excess estimate of 23.7% was obtained during days when both maximum apparent and minimum night-time temperature reached extreme values (+32 and +20 °C, respectively), with 31.0% extra deaths for periods of three days or more. CONCLUSIONS: Heat during summer 2015 was associated with an increase in mortality in the warmer regions of Switzerland and it mainly affected older people. Estimates for 2015 were only a little lower compared to those of summer 2003, indicating that mitigation measures to prevent heat-related mortality in Switzerland have not become noticeably effective in the last 10 years

    Impact of the warm summer 2015 on emergency hospital admissions in Switzerland.

    Get PDF
    BACKGROUND: Only a few studies have examined the impact of a particular heat event on morbidity. The aim of this study was to evaluate the impact of the warm summer 2015 on emergency hospital admissions (EHA) in Switzerland. The summer 2015 ranks as the second hottest after 2003 in the history of temperature observation in Switzerland. METHODS: Daily counts of EHA for various disease categories during summer 2015 were analyzed in relation to previous summers in Switzerland. Excess EHA for non-external causes during summer 2015 (June-August) were estimated by age group, gender, geographic region and disease category by comparing observed and expected cases. The latter were predicted from strata-specific quasi-Poisson regression models fitted to the daily counts of EHA for years 2012-2014. RESULTS: Over the three summer months in 2015, an estimated 2.4% (95% confidence interval [CI] 1.6-3.2%) increase in EHA (non-external causes) occurred corresponding to 2,768 excess cases. Highest excess EHA estimates were found in the warmest regions (Ticino [8.4%, 95% CI 5.1-11.7%] and the Lake Geneva region [4.8%, 95% CI 3.0-6.7%]) and among the elderly population aged ?75?years (5.1%, 95% CI 3.7-6.5%). Increased EHA during days with most extreme temperatures were observed for influenza and pneumonia, certain infectious diseases and diseases of the genitourinary system. CONCLUSIONS: Summer 2015 had a considerable impact on EHA in Switzerland. The daily number of EHA mainly increased due to diseases not commonly linked to heat-related mortality. No excess morbidity was found for cardiovascular and most respiratory diseases. This suggests that current public health interventions should be reevaluated to prevent both heat-related illness and deaths

    Exploring the association between heat and mortality in Switzerland between 1995 and 2013.

    Get PDF
    Designing effective public health strategies to prevent adverse health effect of hot weather is crucial in the context of global warming. In Switzerland, the 2003 heat have caused an estimated 7% increase in all-cause mortality. As a consequence, the Swiss Federal Office of Public Health developed an information campaign to raise public awareness on heat threats. For a better understanding on how hot weather affects daily mortality in Switzerland, we assessed the effect of heat on daily mortality in eight Swiss cities and population subgroups from 1995 to 2013 using different temperature metrics (daily mean (Tmean), maximum (Tmax), minimum (Tmin) and maximum apparent temperature (Tappmax)), and aimed to evaluate variations of the heat effect after 2003 (1995-2002 versus 2004-2013). We applied conditional quasi-Poisson regression models with non-linear distributed lag functions to estimate temperature-mortality associations over all cities (1995-2013) and separately for two time periods (1995-2002, 2004-2013). Relative risks (RR) of daily mortality were estimated for increases in temperature from the median to the 98th percentile of the warm season temperature distribution. Over the whole time period, significant temperature-mortality relationships were found for all temperature indicators (RR (95% confidence interval): Tappmax: 1.12 (1.05; 1.18); Tmax: 1.15 (1.08-1.22); Tmean: 1.16 (1.09-1.23); Tmin 1.23 (1.15-1.32)). Mortality risks were higher at the beginning of the summer, especially for Tmin. In the more recent time period, we observed a non-significant reduction in the effect of high temperatures on mortality, with the age group > 74 years remaining the population at highest risk. High temperatures continue to be a considerable risk factor for human health in Switzerland after 2003. More effective public health measures targeting the elderly should be promoted with increased attention to the first heat events in summer and considering both high day-time and night-time temperatures

    Nationwide Analysis of the Heat- and Cold-Related Mortality Trends in Switzerland between 1969 and 2017: The Role of Population Aging.

    Get PDF
    BACKGROUND: Because older adults are particularly vulnerable to nonoptimal temperatures, it is expected that the progressive population aging will amplify the health burden attributable to heat and cold due to climate change in future decades. However, limited evidence exists on the contribution of population aging on historical temperature-mortality trends. OBJECTIVES: We aimed to a) assess trends in heat- and cold-related mortality in Switzerland between 1969 and 2017 and b) to quantify the contribution of population aging to the observed patterns. METHODS: We collected daily time series of all-cause mortality by age group (<65, 65-79, and 80 y and older) and mean temperature for each Swiss municipality (1969-2017). We performed a two-stage time-series analysis with distributed lag nonlinear models and multivariate longitudinal meta-regression to obtain temperature-mortality associations by canton, decade, and age group. We then calculated the corresponding excess mortality attributable to nonoptimal temperatures and compared it to the estimates obtained in a hypothetical scenario of no population aging. RESULTS: Between 1969 and 2017, heat- and cold-related mortality represented 0.28% [95% confidence interval (CI): 0.18, 0.37] and 8.91% (95% CI: 7.46, 10.21) of total mortality, which corresponded to 2.4 and 77 deaths per 100,000 people annually, respectively. Although mortality rates for heat slightly increased over time, annual number of deaths substantially raised up from 74 (12;125) to 181 (39;307) between 1969-78 and 2009-17, mostly driven by the ≄80-y-old age group. Cold-related mortality rates decreased across all ages, but annual cold-related deaths still increased among the ≄80, due to the increase in the population at risk. We estimated that heat- and cold-related deaths would have been 52.7% and 44.6% lower, respectively, in the most recent decade in the absence of population aging. DISCUSSION: Our findings suggest that a substantial proportion of historical temperature-related impacts can be attributed to population aging. We found that population aging has attenuated the decrease in cold-related mortality and amplified heat-related mortality. https://doi.org/10.1289/EHP9835

    Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: a cross-sectional study

    Get PDF
    BACKGROUND: Most studies having shown respiratory health effects from traffic exhaust were conducted in urban areas with a complex mixture of air pollution sources. This study has investigated the potential impact of traffic exhaust on respiratory symptoms among adults living along a Swiss alpine highway corridor, where traffic exhaust from the respective trans-Alpine highway is the predominant source of air pollution. METHODS: In summer 2005, we recruited 1839 adults aged 15 to 70 from a random sample of 10 communities along the Swiss alpine highway corridors. Subjects answered a questionnaire on respiratory health (asthmatic and bronchitic symptoms), risk factors, and potential confounding variables. We used logistic regression models to assess associations between respiratory symptoms and traffic exposure being defined a) as living within 200 m of the highway, and b) as a bell-shaped function simulating the decrease of pollution levels with increasing distance to the highway. RESULTS: Positive associations were found between living close to a highway and wheezing without cold (OR = 3.10, 95%-CI: 1.27-7.55) and chronic cough (OR = 2.88, 95%-CI: 1.17-7.05). The models using a bell-shaped function suggested that symptoms reached background levels after 400-500 m from the highway. The association with chronic cough was driven by a subgroup reporting hay fever or allergic rhinitis. CONCLUSIONS: Highway traffic exhaust in alpine highway corridors, in the absence of other industrial sources, showed negative associations with the respiratory health of adults, higher than those previously found in urban areas

    Ambient Particulate Air Pollution and Daily Mortality in 652 Cities.

    Get PDF
    BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 ÎŒm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 ÎŒm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 ÎŒg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.)

    Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries.

    Get PDF
    OBJECTIVE: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. DESIGN: Two stage time series analysis. SETTING: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. POPULATION: Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only). RESULTS: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 ”g/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 ”g/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 ”g/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. CONCLUSIONS: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    Multi-Country Multi-City (MCC) Collaborative Research Network: Barrak Alahmad, Rosana Abrutzky, Paulo Hilario Nascimento Saldiva, Patricia Matus Correa, NicolĂĄs ValdĂ©s Orteg, Haidong Kan, Samuel Osorio, Ene Indermitte, Jouni J K Jaakkola, Niilo Ryti, Alexandra Schneider, Veronika Huber, Klea Katsouyanni, Antonis Analitis, Alireza Entezari, Fatemeh Mayvaneh, Paola Michelozzi, Francesca de'Donato, Masahiro Hashizume, Yoonhee Kim, Magali Hurtado Diaz, CĂ©sar De la Cruz Valencia, Ala Overcenco, Danny Houthuijs, Caroline Ameling, Shilpa Rao, Xerxes Seposo, Baltazar Nunes, Iulian-Horia Holobaca, Ho Kim, Whanhee Lee, Carmen ĂĂ±iguez, Bertil Forsberg, Christofer Åström, Martina S Ragettli, Yue-Liang Leon Guo, Bing-Yu Chen, Valentina Colistro, Antonella Zanobetti, Joel Schwartz, Tran Ngoc Dang, Do Van DungErratum in: Author Correction: Sci Rep. 2022 May 13;12(1):7960. doi: 10.1038/s41598-022-11769-6. https://www.nature.com/articles/s41598-022-11769-6Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.The study was primarily supported by Grants from the European Commission’s Joint Research Centre Seville (Research Contract ID: JRC/SVQ/2020/MVP/1654), Medical Research Council-UK (Grant ID: MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). The following individual Grants also supported this work: J.K and A.U were supported by the Czech Science Foundation, project 20-28560S. A.T was supported by MCIN/AEI/10.13039/501100011033, Grant CEX2018-000794-S. V.H was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant agreement No 101032087.info:eu-repo/semantics/publishedVersio
    corecore