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Summary boxes 99 

What is already known on this topic  100 

 Evidence on the short-term association between ground-level ozone and mortality has 101 
been obtained in a large number of studies. These investigations have been mostly 102 
performed in a relatively small number of locations, in limited geographical areas, and 103 
using various designs and modelling approaches. 104 

 While most of the studies found positive associations, results are heterogeneous, and 105 
a critical comparison across different countries and regions is made difficult by the 106 
limited statistical power and the differences across studies mentioned above. 107 

 Estimates of the association are usually reported as relative risk, a summary measure 108 
that does not quantify the actual health impact and makes it difficult to evaluate 109 
comparative health benefits of different regulatory limits.  110 

 111 
What this study adds  112 

 This large multi-country study found increased mortality risks associated to ozone 113 
exposure across locations and countries, with an average 0.18% per 10 µg/m3, 114 
reinforcing the evidence of a potential causal association. 115 

 The application of state-of-the-art study designs and analytical methods allows a 116 
consistent comparison across regions and populations, with evidence of 117 
heterogeneous associations. 118 

 Risk estimates were translated in measures of excess mortality, and it was found that 119 
more than 6 thousand deaths per year, corresponding to 0.20% of the total mortality, 120 
would have been avoided in the 406 cities studied if countries had implemented stricter 121 
air quality standards compliant with WHO guideline. Substantial annual excess deaths 122 
above this threshold were found in main cities such as Valley of Mexico with 694 per 123 
year, 211 in Los Angeles, 170 in Tokyo or 128 in Toronto. 124 

 Moreover, smaller but still substantial mortality impacts were found below WHO 125 
guideline, supporting the WHO initiative of encouraging countries to revisit current air 126 
quality guidelines and enforcing stronger emission restrictions to meet these 127 
recommendations. 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 
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 140 

 141 
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Abstract 142 

Objective: To assess short-term mortality risks and excess mortality associated to exposure 143 
to ozone in a multi-city multi-country setting. 144 

Design: Two-stage time-series analysis with quasi-Poisson time series regression and 145 
multilevel meta-analysis. 146 

Setting and population: daily time series data from 406 cities within 20 countries in 147 
overlapping periods between 1985 and 2015, collected in the Multi-City Multi-Country (MCC) 148 
Collaborative Research Network. 149 

Main Outcome(s) and Measure(s): Daily total mortality (all or non-external causes only).  150 

Results: On average, a 10-µg/m3 increase in ozone during the current and previous day was 151 
associated with a relative risk of mortality of 1.0018 (95% CI, 1.0012 to 1.0024). We found 152 
some heterogeneity across countries, ranging from estimates above 1.0020 in the United 153 
Kingdom, South Africa, Estonia and Canada to associations below 1.0008 in Mexico and 154 
Spain. Exposure to ozone above maximum background levels (70 µg/m3) accounted for 155 
short-term excess mortality of 0.26% (95% CI, 0.24 to 0.28) on average across the 406 156 
cities. The impact remained substantial (0.20% (95% CI, 0.18 to 0.22)) when restricting to 157 
days above the WHO guideline (100 µg/m3), corresponding to a total of 6,262 deaths per 158 
year (95% CI, 1,413 to 11,065). Above more lenient thresholds, excess mortality amounted 159 
to 0.14%, 0.09% and 0.05% corresponding to the European, American and Chinese air 160 
quality standards (AQSs), respectively.  161 

Conclusions: This multi-country study represents the largest assessment to date on short-162 
term ozone-related mortality. For the first time, this study reports health impacts quantified 163 
as excess mortality across countries and various exposure ranges. In particular, results 164 
suggest that  a substantial reduction in mortality would be potentially achieved under stricter 165 
AQS. These findings have relevance for the implementation of efficient clean air 166 
interventions and mitigation strategies designed within national and international climate 167 
policies. 168 

 169 

 170 

 171 

 172 
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 181 
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Print abstract 182 

Study question: What is the short-term mortality risk associated with exposure to ozone and 183 
the corresponding excess mortality at exposure levels above current air quality standards? 184 

Methods: A two-stage time-series analysis with quasi-Poisson time series regression and 185 
multilevel meta-analysis was performed using daily data from 406 cities within 20 countries in 186 
overlapping periods between 1985 and 2015, collected by the Multi-City Multi-Country 187 
Collaborative Research Network. 188 

Study answer and limitations: overall, mortality risk increased by 0.18% per 10-µg/m3 increase 189 
in ambient ozone, which translated into 0.26% excess mortality in days with exposure to ozone 190 
above maximum background levels (70 µg/m3). The impact remained substantial (0.20% (95% 191 
CI, 0.18 to 0.22)) when restricting to days above the WHO guideline (100 µg/m3), 192 
corresponding to a total of 6,262 deaths per year (95% CI, 1,413 to 11,065) in the selected 193 
cities. Findings cannot be considered truly global estimates, as some geographical areas or 194 
countries are under-represented. There could be some systematic differences in the collected 195 
data between countries. This study did not aim at assessing cause-specific mortality 196 
association or sources of heterogeneity across estimates. Excess mortality estimates refer to 197 
transient impact measures and not to the mortality burden or person-years of life lost attributed 198 
to long-term ozone exposure. 199 

What this study adds: our study suggests that ozone-related health impacts can be largely 200 
preventable by attaining effective AQSs in line with the WHO guideline.  201 

Funding, competing interests and data sharing: This work was primarily supported by the 202 
Medical Research Council-UK (Grants ID: MR/M022625/1 and MR/R013349/1) and by the 203 
Natural Environment Research Council UK (Grant ID: NE/R009384/1). Other individual grants 204 
also supported this work. Ethical approval was not required. No additional data is available. 205 

*Include Figure 3  206 
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Introduction 207 

Ground-level ozone is a highly reactive, oxidative gas commonly found in urban and suburban 208 
environments mostly derived from anthropogenic emissions. The exposure to this pollutant 209 
has been associated to adverse health outcomes, including increased short-term mortality and 210 
morbidity, in numerous epidemiological studies and reported in several reviews from important 211 
health and environmental agencies worldwide.1–4 Evidence on health impacts related to ozone 212 
exposure has important implications in climate change research, as ozone levels are predicted 213 
to increase as global warming progresses.5 214 
 215 
Short-term ozone-mortality associations have been widely assessed in several multi-location 216 
time series studies in Europe, US, Canada, Latin-America and Asia.2,6–8 The general 217 
methodological framework consists of pooling location-specific estimated risks, accounting for 218 
potential heterogeneity in the magnitude of the effect and uncertainty. In addition, the 219 
increased statistical power of multi-location analyses allows for the exploration of potentially 220 
complex features of the association (i.e., non-linearity, delayed effects and harvesting, or 221 
differential risks by season).9–11  However, previous multi-location studies included a small 222 
number of cities/countries, have generally a limited geographical scope, and applied 223 
heterogeneous analytical approaches and modelling choices, making it difficult to draw a 224 
consistent and comprehensive picture across different regions of the world.    225 

While ozone-mortality associations have been widely assessed, results are rarely reported in 226 
terms of health impacts, for instance as excess deaths.12 Available figures are mostly derived 227 
from long-term exposure metrics and risks estimated in specific subgroups, which are usually 228 
extrapolated to the general population.13,14 Quantification of air-pollution-health burdens can 229 
be extremely useful for the design of efficient public health interventions, including the 230 
definition, assessment, and review of air quality standards (AQS). Current AQS greatly vary 231 
between countries, and only a few of them meet the stricter World Health Organization (WHO) 232 
recommendations.15 The comparison between health impacts above different AQSs can 233 
provide valuable insights into potential public health benefits achieved by strengthening 234 
current clean air policies. Although a few studies attempted to address this issue, a 235 
widespread evaluation across several countries, which would help identifying more affected 236 
areas with a greater need for intervention, is still lacking.16,17 237 
 238 
We aim to address these gaps in knowledge through a comprehensive assessment of 239 
mortality associated with short-term exposure to ozone, using the largest epidemiological 240 
dataset ever collected for this purpose, including data from 406 cities within 20 countries from 241 
multiple geographical regions. We first assessed ozone-mortality associations using advanced 242 
statistical techniques for multi-location time-series analysis. Next, we explored potential 243 
complexities of the association, namely non-linearity, mortality displacement and seasonality. 244 
Finally, we quantified the ozone-associated mortality impacts for specific concentrations 245 
ranges consistent with the current AQS levels, and then we compared estimates across 246 
countries. 247 

 248 

 249 

 250 
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Methods 251 

Data collection 252 

Data for 434 locations across the 20 countries were initially extracted from the database of the 253 
Multi-city Multi-country (MCC) Collaborative Research Network (http://mccstudy.lshtm.ac.uk/). 254 
These include location-specific daily mortality counts and environmental measures (weather 255 
and air pollutants) in largely overlapping periods, ranging from 1st of January 1985 to 31st 256 
December 2015. For each location, we derived daily time series of ozone (maximum 8-hour 257 
average), particulate matter with an aerodynamic diameter less than or equal to 10µm (PM10, 258 
µg/m3, 24-hour average), particulate matter with an aerodynamic diameter less than or equal 259 
to 2.5µm (PM2.5, µg/m3, 24-hour average), nitrogen dioxide (NO2, 24-hour average), total 260 
mortality, mean temperature (°C) and relative humidity (%). Mortality was represented by all-261 
cause deaths in  Canada, Czech Republic, Estonia, France, Germany, Greece, Italy, Japan, 262 
Mexico, Portugal, South Africa, South Korea, Sweden, Taiwan, UK, and US, while deaths due 263 
to non-external causes (e.g. excluding self-intentional harm, poisoning) were used in Australia, 264 
China, Spain and Switzerland (see the eMethods 1 for the specific ICD used in each country). 265 
City-specific air pollution series were derived from daily measurements of one or more 266 
monitors of the national or regional network. When more than one monitor were available, 267 
daily level of each pollutant (24h-average of 8-hour maximum) was computed as the average 268 
across monitors of the city, consistent with previous multi-city studies.2 We excluded 28 cities 269 
due to either poor quality data or limited periods (less than 3 years), with a final number of 406 270 
locations included in the final analysis (detailed description of the data, exposure assessment, 271 
and exclusion criteria are provided in eMethods 1). 272 

Statistical analysis 273 

The general statistical framework applied here is an extension of the classical two-stage 274 
design,6 and it incorporates complex multi-parameter associations, hierarchical pooling 275 
methods, and the computation of impact measures.18–20 In brief, city-specific ozone-mortality 276 
risks were firstly estimated from separate time-series regression models, and then pooled in 277 
the second stage through a meta-analysis. In a final step, impact estimates, expressed as 278 
excess mortality fractions associated with ozone, were derived from the pooled country-279 
specific risks and city-specific exposure series. Using this general statistical framework, a set 280 
of additional and sensitivity analyses were performed to investigate specific features of the 281 
association. The following sub-sections provide a more detailed description of each step and 282 
sub-analyses. We did all analysis with R software (version 3.5.2) using the packages dlnm 283 
and mixmeta. 284 

Main analysis 285 

In the first stage, we performed city-specific time-series analyses using generalized linear 286 
models with quasi-Poisson family. In this type of regression models, a quasi-likelihood is 287 
applied to properly scale the standard deviation of the coefficients proportionally to the 288 
potential overdispersion. This phenomenon is very common in this type of data, when the 289 
variability is larger than that expected under the assumption of a Poisson distribution. Short-290 
term ozone-mortality associations were assessed using unconstrained distributed lag linear 291 
models (DLMs).11,21 These model accounts for delayed effects of time-varying exposures, and 292 
quantify net effects over a pre-defined lag period.20 For the main model, we selected lag 0-1, 293 
estimating cumulative associations with the same and previous day’s exposures. The 294 
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regression model included a natural spline of time with 7 degrees of freedom (df) per year, 295 
selected based on a quasi-likelihood version of the Akaike Information Criterion (q-AIC) 296 
between 4, 6, 7, 8, 10 df, and indicator variables for the day of the week, in order to control for 297 
long-term, seasonal, and weekly variations in risk. Unlike in most previous studies on ozone, 298 
we applied a stricter control for temperature by using distributed lag non-linear models 299 
(DLNMs), an extension of DLMs for modelling complex non-linear and lagged association. 300 
Following modelling choices applied in published analyses, we modelled the net temperature-301 
mortality association over lag 0-21 (see details in eMethods 2).22  302 

In the second stage, city-specific estimates were then pooled through a multilevel meta-303 
analysis. This novel meta-analytical model defines more complex random-effects that can 304 
account for variations in risk across two nested grouping levels, represented by cities within 305 
countries.19 This approach allowed the derivation of improved estimates of ozone-mortality 306 
associations at both city and country level, defined as best linear unbiased predictions 307 
(BLUPs). BLUPs borrow information across units within the same hierarchical level, and can 308 
provide more accurate estimates especially in locations with small daily mortality counts or 309 
short series. We tested the presence of heterogeneity and reported it using multilevel 310 
extensions of Cochran Q test and I² statistic.23 Association estimates, expressed as relative 311 
risk (RR) of mortality per 10 µg/m3 increase of ozone and 95% confidence interval (CI), were 312 
derived for each country from the corresponding BLUPs. 313 

Ozone-mortality risk estimates were then translated into impact measures, represented by 314 
excess mortality, following a method described elsewhere.18 In brief, for each city we 315 
computed the daily number of deaths attributable to ozone (or daily excess deaths) using the 316 
corresponding risk estimate associated with the level of ozone in each day. Regarding the 317 
latter, country-specific BLUPs, instead of the city-specific estimates, were used to avoid 318 
imbalances due to selection of cities and periods within each country. City-specific estimates 319 
were reported as annual average number of excess deaths and 95% CI, so allowing for a 320 
proper comparison between locations with different length of study period. Then, country-321 
specific impacts were represented by excess mortality fractions (%) computed as the sum of 322 
the city-specific daily excess deaths divided by the total mortality for each country. Fractions 323 
were used instead of number of excess deaths, as these are not comparable across countries 324 
given its dependency on the denominator (i.e. total mortality) which at the same time depends 325 
on the number of locations included. Although there is no evidence of a “safe” threshold, we 326 
computed associated deaths only for days with ozone above 70 µg/m3, as in previous health 327 
impact assessments.4 This counterfactual scenario of 70 µg/m3 was considered because 328 
ozone levels below this threshold could be mostly attributed to non-anthropogenic sources. A 329 
counterfactual scenario defined at 0 µg/m3 would not be appropriate either as it is not realistic 330 
given the ubiquitous presence of low levels of ozone derived from natural sources. Mortality 331 
impacts were also disaggregated into contributions for exposure ranges above and between 332 
current AQS: 100 µg/m3 (WHO), 120 µg/m3 (EU directive), 140 µg/m3 (National Ambient Air 333 
Quality Standard (NAAQS) in the US, approximately 0.070 parts-per-million) and 160 µg/m3 334 
(Chinese Ambient Air Quality Standard (CAAQS) level 2).15 335 

Additional complexities and sensitivity analyses 336 

A series of additional sub-analyses were performed to explore more complex features of the 337 
association, such as potential non-linearity, lagged effects, and seasonal differences. First, 338 
exposure-response functions were modelled with a non-linear function consisting of a cubic 339 
B-spline with internal knots at 50 and 60 µg/m3 of ozone. Second, delayed risks and potential 340 
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mortality displacement were assessed by extending the lag dimension of the DLM up to 30 341 
days. Lag-response associations were modelled using a natural cubic spline with three internal 342 
knots placed at equally-spaced lag values in the log scale. Third, seasonal differences were 343 
assessed through interaction models between an indicator of season and the DLM of ozone, 344 
as described elsewhere.24 We derived the ozone-mortality risk for the warm season (June to 345 
August in Northern Hemisphere, December, January and February in Southern Hemisphere) 346 
and cold seasons (the remaining months). 347 

Modelling choices in the main model and extensions described above where assessed and 348 
compared through q-AIC and multivariate extensions of the Wald test. As sensitivity analyses, 349 
we first assessed changes in control for time trends, and the potential confounding from other 350 
air pollutants (PM10, PM2.5 and NO2) and relative humidity by including each of these terms 351 
separately in the model. We then assessed the exclusion of a subset of US cities with summer-352 
only data which were included in the main analysis, and then different modelling approaches 353 
to control for temperature. See eMethods 1 and 2 for a description of the modelling details.  354 

Patient and public involvement 355 

This was a multinational collaboration using aggregated city-level mortality and environmental 356 
data. Patients and members of the public did not contribute to the steering committee, design 357 
or other areas of the study, which involved complex research methods and analysis. 358 
Dissemination of the findings will be carried out through press releases by the research 359 
institutions of the contributing authors. 360 
 361 
 362 

Results  363 

Table 1 provides a summary description of the data included for each country. We analysed 364 
a total number of 45,165,171 deaths in the 406 cities, with an average time series of 13 years. 365 
Figure 1 shows a widely heterogeneous pattern in ozone levels, reported as average annual 366 
mean, across cities between and within country. For example, lower levels were registered in 367 
the Australian cities and cities in Northern Europe, while higher annual averages were found 368 
in some cities in the central area of US, Mexico and Taiwan. Country-specific descriptive 369 
summaries of the other air pollutants and humidity are provided in eTable1, and the 370 
corresponding city-specific descriptive results are reported in eTable 2. 371 

On average, each 10-µg/m3 increase in ozone was associated with an overall RR of mortality 372 
of 1.0018 (95%CI, 1.0012 to 1.0024) (Figure 2). Some heterogeneity was found across country 373 
and city-specific risks (I2 of 29.8%, Cochran Q p-value <0.001). Larger risk estimates were 374 
found in the United Kingdom (UK) (1.0035 (95%CI, 1.0024 to 1.0046)), South Africa (1.0027 375 
(95%CI, 1.0013 to 1.0042)), Estonia (1.0023 (95% CI, 1.0006 to 1.0040)) and Canada (1.0023 376 
(95%CI, 1.0013 to 1.0032)), while Australia, China, Czech Republic, France, Germany, Italy, 377 
Japan, South Korea Sweden, Switzerland and the US reported similar risks ranging between 378 
1.0014 and 1.0020. Lower and imprecise associations were estimated for Greece (1.0011 379 
(95%CI, 0.9995 to 1.0028)), Mexico (1.0008 (95%CI, (1.000 to 1.0015)), Portugal (1.0011 380 
(95%CI, 0.9997 to 1.0026)), Spain (1.0006 (95%CI, 0.9992 to 1.0019)) and Taiwan (1.0010 381 
(95%CI, 0.9999 to 1.0021)). The corresponding figures with the RRs for an increase in 10 382 
parts-per-billion (ppb) of ozone are provided in eFigure 1.  383 
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Figure 3 depicts the excess mortality fractions above WHO guideline and its distribution across 384 
intervals between the other AQSs for each country, while eTable 3 and eTable 4 report the 385 
corresponding figures for excess fractions for total ozone (above 70 µg/m3) and above and 386 
between AQS. Table 2 shows fractions and annual number of excess deaths associated with 387 
ozone for the total range of exposure and above WHO guideline for a selection of the main 388 
cities in each country and overall across the 406 locations. Total mortality associated with 389 
ozone above 70 µg/m3 accounted for 0.26% of deaths (95%CI, 0.24 to 0.28), which translates 390 
into 8,203 annual excess deaths (95% CI, 3,525 to 12,840) across the 406 locations studied 391 
(Table 2). A substantial residual excess mortality of 0.20% (95%CI, 0.18 to 0.22) 392 
corresponding to 6,262 (95% CI, 1,413 to 11,065) annual excess deaths remained when 393 
restricting to days with levels above the WHO recommendation of 100 µg/m3. As shown in 394 
Figure 3, this proportion varied greatly by country, with considerably larger fractions in Mexico 395 
(0.52% (95%CI, 0.14 to 0.92)) and Taiwan (0.37% (95%CI, 0.08 to 0.64)). Mortality excess 396 
around 0.20% were estimated in Canada, China, Italy, Japan, South Africa, Switzerland and 397 
USA, while France, Germany, South Korea and UK reported smaller percentages, ranging 398 
between 0.14% and 0.05%. Imprecise or almost null estimates were found in Czech Republic, 399 
Estonia, Greece, Portugal, Spain and Sweden. Overall mortality fractions above more lenient 400 
AQSs (i.e. EU, NAAQS and CAAQS) decreased progressively to 0.14%, 0.09% and 0.05%, 401 
respectively (eTable 3). Only Mexico reported a considerably higher fraction of 0.35% above 402 
the highest AQS of 160 µg/m3, although highly uncertain (black bar in Figure 3). Note that null 403 
excess deaths were found in Australia, as daily exposure levels were all below 70 µg/m3. A 404 
similar pattern was found across estimates for the main cities in each country (Table 2). A 405 
substantial number of annual excess deaths were associated to ozone levels above WHO 406 
guideline, namely 694 (95% CI, 22 to 1,317) in Valley of Mexico, 211 (95% CI: 112 to 307) in 407 
Los Angeles, 170 (95% CI, 40 to 304) in Tokyo, 128 (95% CI, 59 to 197) in Toronto, 82 (95% 408 
CI, 19 to 148) in Johannesburg, 48 (95% CI, 0 to 96) in Paris and 37 (95% CI, 15 to 57) in 409 
London (Table 2). eTable 5 shows the corresponding estimates for the 406 cities. 410 

Additional analyses suggested no evidence of non-linearity in the concentration-response 411 
association (according to q-AIC) (eFigure 2). The assessment of the lagged associations 412 
confirmed an immediate ozone-mortality association during the first week (eFigure 1). 413 
However, lag-specific estimates below 1 were found after the second week which resulted in 414 
a slightly lower overall cumulative association of 1.0015 (95% CI, 0.9991 to 1.0032) when 415 
considering the delayed effects over the first 30 days after the exposure. Finally, no evidence 416 
of seasonal differences in ozone-mortality association were found (warm season: 1.0012 (95% 417 
CI, 1.000 to 1.0026); cold season 1.0015% (95% CI, 1.0006 to 1.0024), Wald test p-value = 418 
0.37). 419 

Results from sensitivity analyses suggest that risk estimates of the main analysis were robust 420 
to the different modelling choices related to the control for time trends and adjustment by the 421 
three air pollutants and humidity (eTable 6). However, ozone-mortality risk estimates seemed 422 
to be sensitive to the approach to control for temperature (eFigure 3). We found larger ozone-423 
mortality association estimates using less stringent control, although q-AIC values suggested 424 
that the model with DLNM of temperature (main model) provided the best fit. 425 

Discussion 426 

Principal findings 427 
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To the best of our knowledge, this is the largest epidemiological investigation on short-term 428 
ozone-mortality associations to date, including almost 50 million deaths from 406 cities in 20 429 
countries from different regions across the world. Given its large sample size and wide 430 
geographical coverage, we were able to obtain consistent evidence of an association between 431 
short-term exposure to ozone and total mortality. In addition, we provided for the first time 432 
ozone-related impact estimates, quantified as excess mortality, across different AQS, 433 
countries and cities, providing evidence with important public health implications. 434 

On average, we found an overall short-term ozone-mortality association of 1.0018 (95%CI, 435 
1.0012 to 1.0024) per 10-µg/m3 increase. This evidence is supported by previous 436 
epidemiological and experimental studies suggesting several patho-physiological 437 
mechanisms (e.g. systemic inflammation, haemostatic alterations).25,26 Larger associations 438 
were found in previous multi-country studies, including a subset of countries investigated here 439 
(e.g. RR of 1.0022 in APHEA, 1.0026 in APHENA, per 10-µg/m3 increase),11,21 or other single-440 
country studies (e.g. RR of 1.0025 in the US (originally 1.0052 per 10-ppb increase), and 441 
China, and 1.015 in Italy).27–29 Differences in the definition of the exposure variable (e.g. 442 
moving average, single lag) and modelling approach could explain these discrepancies in the 443 
magnitude of the association. For example, compared to previous studies, we applied a 444 
stronger control for temperature (i.e. DLNMs), fully accounting for non-linearity and lagged 445 
temperature-mortality associations.22 In fact, results from sensitivity analyses are consistent 446 
with previous findings showing that ozone-mortality risk estimates were very sensitive to the 447 
modelling strategy to control for temperature, reporting larger risks when using simpler 448 
approaches (eFigure 3).27 Moreover, one of the novelties of the applied statistical framework 449 
is the use of multilevel meta-analytical models in the second stage, properly accounting for 450 
heterogeneity across cities and countries.  451 

Our results revealed important differences in the ozone-mortality association across countries. 452 
For example, while some areas such as UK, South Africa, Canada and Estonia reported the 453 
largest risk estimates above 1.0020, smaller and/or imprecise estimates below 1.0011 were 454 
found in Greece, Mexico, Spain and Taiwan. This unclear pattern would suggest that, while 455 
several community-level factors have been proposed as potential modifiers in single-country 456 
studies (e.g. population characteristics), these might not fully characterise between-country 457 
differences.30 Future multi-country studies are needed to provide further evidence on the 458 
factors defining the level of vulnerability of the population to air pollution. 459 

This study also provides valuable evidence on the potential public health benefits of stricter 460 
clean air policies. In particular, we found that 0.20% excess mortality, which translates into 461 
more than 6 thousand deaths per year, related to short-term exposure to ozone would have 462 
been avoided if ambient levels were below WHO recommendation of 100 µg/m3 in the 406 463 
cities included in the study. Recent reviews found that the vast majority of current AQSs are 464 
not compliant with the WHO air quality recommendations,15 and that 80% of the world 465 
population in urban areas are exposed to air pollution levels above this threshold.31 Moreover, 466 
an additional 0.06% of excess deaths is associated with ozone levels between 70 and 100 467 
µg/m3. These findings support the WHO initiative of encouraging countries to revisit current 468 
AQSs and enforce stronger emission restrictions and other public health interventions to meet 469 
their recommendations. Additionally, our results have important implications for healthcare 470 
practice. Apart from the implementation of clean air policies, individual strategies to reduce 471 
the personal exposure to air pollutants are also desirable.32 In this regard, clinicians play an 472 
important role in providing counselling to patients with potentially a higher susceptibility to 473 
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adverse health outcomes related to air pollution. For instance, professionals can advise 474 
sensitive individuals to stay indoors or avoid doing exercise during episodes of elevated 475 
ambient ozone. 476 

Previous studies showed that important health benefits could be achieved if reductions of 477 
ozone levels are reached.9,13,16 However, this is the first multi-country study comparing excess 478 
mortality estimates across AQSs and countries, providing additional insights on specific areas 479 
with more urgent need of further interventions. For example, we found that 0.52% of total 480 
mortality in Mexico was associated to ozone above WHO limit, the largest mortality fraction 481 
amongst the studied countries. This is due to the high ozone levels registered in the Mexican 482 
cities, especially above 160 µg/m3 limit, which is close to its current AQS of 156 µg/m3. This 483 
means that attaining the current lenient standards would prevent a substantial proportion of 484 
ozone-related deaths in this country. In contrast, results for the UK show a lower mortality 485 
fraction, despite the strongest ozone-mortality association, due to the lower ozone levels 486 
registered in this country. 487 

Strengths and limitations of the study 488 

We were able to efficiently explore additional complexities of the association by taking 489 
advantage of the large statistical power and advanced statistical techniques. First, our results 490 
support the conclusions of previous studies on a generally linear concentration-response 491 
functions, with no indication of threshold.9,27 Second, we found evidence of a potential mortality 492 
displacement in the third and fourth week after the exposure. A similar lag pattern was 493 
previously observed.10,11 However, potential mechanisms explaining this delayed and 494 
sustained pattern remain unclear. Finally, we found no evidence of seasonal differences in the 495 
ozone-mortality association. Previous multi-site studies have provided conflicting results, with 496 
larger risks in cold seasons in Asia,27 and in warm season in US and Europe.6 Further analyses 497 
are warranted to characterize different patterns across regions. 498 

This study presents some limitations. First, our results should not be considered truly global 499 
estimates, since several areas of the world such as South America, Africa and Middle East, 500 
are unrepresented or not assessed. In addition, the reported nationwide results may not be 501 
representative of the true impacts for some countries with a limited number of cities included 502 
in the study (e.g. Sweden, Czech Republic, China). In particular, the estimated number of total 503 
excess deaths attributed to ozone should be interpreted as the sum of impacts in the 406 504 
observed locations, and not as total estimates across the 20 countries. It should be noted that 505 
while excess fractions could be considered proper representations of the impacts for each 506 
country, the total excess number of deaths for each country is highly dependent on the total 507 
mortality considered in the study, that is the number of locations included in each country.    508 
There could also be systematic differences between countries concerning the characteristics 509 
of monitors (type, proximity to the study area), study area boundaries, temporal coverage, 510 
data processing prior to the data collection and in the collection of mortality data (e.g. case 511 
ascertainment, codification). However, we ensured that the provided data fulfilled a minimum 512 
set of requirements in terms of quality, similar definition of the 8-hour maximum metric and 513 
location of the monitor (i.e. within the study area or close enough to ensure its 514 
representativeness). Risks and impact estimates were only reported for total mortality (i.e. 515 
deaths due to all or non-external causes) and we did not seek to identify the sources of 516 
heterogeneity of the results across countries. We acknowledge that the applied approach 517 
prevents us from understanding the potential mechanisms and/or differential susceptibility of 518 
the population, together with contextual differences across locations. Further studies are 519 
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warranted to clarify this complex research question including for example cause-specific 520 
mortality and morbidity, and more complex two-stage analyses. Finally, it is worth noting that 521 
although small the risk estimates apply to the whole population, thus translating into 522 
substantial mortality impacts as shown in our estimates of excess mortality. To the same 523 
token, due to the nature of the study design (i.e. time series analysis) the obtained excess 524 
mortality estimates refer to transient impact measures and not to the mortality burden or 525 
person-years of life lost attributed to chronic ozone exposure.33  526 

 527 

Conclusions 528 

This large multi-country study provided robust evidence on the short-term association between 529 
ozone and mortality. We also demonstrated that clean air policies with the enactment of AQSs 530 
can constitute essential public health tools to minimize the health burden. In particular, our 531 
results clearly suggest that ozone-related health impacts can be largely preventable by 532 
attaining effective AQSs in line with the WHO guideline. Moreover, interventions to further 533 
reduce ozone pollution would provide additional health benefits, even in regions that meet 534 
current regulatory standards and guidelines. These findings have important implications for 535 
the design of future public health actions, in particular, for example in relation to the 536 
implementation of mitigation strategies to reduce the impacts of climate change. 537 

 538 

Figure legends 539 

Figure 1. Map showing the geographical distribution of the city-specific average annual means 540 
of ozone (maximum 8-hour average) of the 469 MCC cities. 541 

Figure 2. Overall and country-specific short-term ozone-mortality association, expressed as 542 
relative risk (RR) per 10-µg/m3 increase in ozone (maximum 8-hour average) (lag 01). 543 

Figure 3. Overall and country-specific excess mortality (%) associated to ozone by specific 544 
ranges defined between thresholds consistent with current air quality standards. (No excess 545 
mortality associated to ozone were found in Australia, as daily ozone levels were below the 546 
maximum background level set up at 70 µg/m3). 547 
 548 
* 100 µg/m3, World Health Organization guideline (WHO); 120 µg/m3, European Directive; 140 µg/m3 549 
(approximately 0.070ppm); National Ambient Air Quality Standard in the US (NAAQS); 160 µg/m3 550 
Chinese Ambient Air Quality Standard (CAAQS). 551 
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Table 1. Description of the environmental and mortality data. 

 Locations 
(N) 

Period 
(range) 

Total 
deaths (N) 

Daily deaths  
(Median (IQR)) 

Ozone 
(Median (IQR)) 

Mean temperature 
(Median (IQR)) 

Australia 3 2000-2009 513,527 49.3 (43.7; 55.7) 31.2 (24.2; 38.6) 18.3 (14.8; 21.5) 

Canada 26 1986-2011 2,914,630 12.8 (10.5; 15.3) 69.2 (53.9; 88.4) 7.3 (-1.0; 15.7) 

China 3 1996-2015 780,655 87.3 (71.7; 140.3) 49.3 (27.8; 77.5) 20.4 (13.0; 25.7) 

Czech Republic 1 1994-2009 214,062 36.0 (32.0; 41.0) 69.3 (47.4; 95.0) 9.2 (2.5; 15.3) 

Estonia 4 2002-2015 80,043 5.0 (3.5; 6.5) 48.9 (36.7; 61.8) 6.0 (0.2; 13.6) 

France 18 2000-2010 1,197,555 16.3 (13.7; 19.1) 67.8 (46.8; 87.4) 12.7 (7.6; 17.9) 

Germany 12 1993-2015 3,099,176 30.4 (26.4; 34.8) 57.1 (35.8; 79.2) 10.5 (4.8; 15.9) 

Greece 1 2001-2010 287,969 78.0 (70.0; 87.0) 75.1 (52.8; 97.5) 17.9 (12.9; 24.9) 

Italy 9 2006-2015 373,421 15.1 (12.6; 17.9) 74.1 (50.5; 97.0) 15.8 (10.2; 22.1) 

Japan 45 2011-2015 1,856,232 22.3 (19.1; 25.7) 78.5 (62.4; 98.4) 16.1 (7.5; 22.7) 

Mexico 7 2000-2012 2,018,313 61.0 (53.7; 69.4) 108.9 (85.1; 135) 18.6 (15.9; 20.5) 

Portugal 2 1997-2012 536,958 47.0 (41.0; 54.0) 64.2 (50.2; 79.2) 16.1 (12.5; 19.6) 

South Africa 5 2004-2013 924,478 58.4 (48.8; 67.0) 69.5 (52.9; 89.5) 18.3 (14.2; 21.2) 

South Korea 7 1999-2015 1,662,199 38.3 (34.0; 42.7) 59.5 (42.7; 81.9) 15.1 (5.8; 22.1) 

Spain 48 2004-2014 1,294,162 6.7 (5.1; 8.4) 70.0 (53.9; 84.7) 15.3 (10.3; 21.1) 

Sweden 1 1990-2010 201,197 26.0 (22.0; 30.0) 61.9 (48.9; 76.0) 6.8 (1.2; 13.9) 

Switzerland 8 1995-2013 230,587 4.2 (2.9; 5.6) 72.8 (47.0; 98.1) 10.7 (4.4; 16.5) 

Taiwan 3 2008-2014 443,680 57.0 (51.0; 63.7) 109.1 (82.1; 138.6) 24.8 (20; 28.2) 

UK 15 1993-2006 2,073,285 28.4 (24.5; 32.9) 51.6 (36.7; 65.2) 10.4 (6.5; 14.6) 

USA 188 1985-2006 24,463,042 16.3 (13.6; 19.3) 80.1 (58.9; 104.0) 14.9 (7.5; 21.9) 

 
Ozone: daily maximum 8-hour mean, µg/m3. Mean temperature, ̊ C. IQR: interquartile range. N: number. Mortality: deaths due to non-external causes (Australia, 
China, Spain, Switzerland (including accidents)) or to all-cause mortality (the remaining countries). Detailed description of the data provided in eMethods 1. 
Country-specific summaries of other air pollutants and relative humidity are provided in eTable 1. City-specific descriptive summaries reported in eTable 2. 
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Table 2. Excess mortality associated to ozone for the total (above 70 µg/m3) and above WHO guideline of 100 µg/m3 in the main cities of each 
participating country and overall estimates for the 406 cities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
*Total refers to ozone-related deaths when levels above 70 µg/m3 (defined as maximum background levels). 
**No excess mortality associated to ozone were found in Australia, as daily ozone levels were below the maximum background level set up at 70 µg/m3. 
WHO: World Health Organization. N: number. 

Country City 
Total (Above 70 µg/m3)* Above WHO Guideline (100 µg/m3) 

Excess fraction  
(%, 95% CI) 

Annual excess deaths  
(N, 95% CI) 

Excess fraction  
(%, 95% CI) 

Annual excess deaths  
(N, 95% CI) 

Australia** Sydney 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 

Canada Toronto 0.59 (0.34 to 0.85) 159 (90 to 228) 0.48 (0.22 to 0.73) 128 (59 to 197) 

China Shanghai 0.32 (0.04 to 0.57) 117 (15 to 209) 0.27 (-0.01 to 0.53) 99 (-4 to 195) 

Czech Republic Prague 0.27 (0.02 to 0.48) 38 (3 to 69) 0.20 (-0.06 to 0.44) 29 (-9 to 63) 

Estonia Tallinn 0.01 (0.00 to 0.02) 1 (0 to 1) 0.00 (-0.01 to 0.01) 0 (-1 to 1) 

France Paris 0.15 (0.05 to 0.26) 70 (24 to 119) 0.11 (0.00 to 0.21) 48 (0 to 96) 

Germany Berlin 0.12 (0.04 to 0.20) 46 (14 to 74) 0.08 (-0.01 to 0.17) 30 (-3 to 62) 

Greece Athens 0.16 (-0.07 to 0.41) 52 (-23 to 132) 0.11 (-0.13 to 0.37) 35 (-42 to 117) 

Italy Rome 0.27 (0.05 to 0.52) 69 (13 to 132) 0.19 (-0.05 to 0.44) 48 (-12 to 111) 

Japan Tokyo 0.27 (0.14 to 0.40) 249 (127 to 371) 0.18 (0.04 to 0.32) 170 (40 to 304) 

Mexico Valley of Mexico 0.73 (0.04 to 1.38) 707 (39 to 1,339) 0.72 (0.02 to 1.36) 694 (22 to 1,317) 

Portugal Lisbon 0.09 (-0.03 to 0.2) 20 (-6 to 45) 0.04 (-0.09 to 0.17) 9 (-20 to 39) 

South Africa City of Johannesburg 0.32 (0.15 to 0.49) 121 (59 to 187) 0.22 (0.05 to 0.39) 82 (19 to 148) 

South Korea Seoul 0.10 (0.03 to 0.17) 41 (13 to 71) 0.06 (-0.01 to 0.14) 27 (-3 to 58) 

Spain Madrid 0.03 (-0.04 to 0.11) 9 (-12 to 31) 0.01 (-0.07 to 0.10) 3 (-21 to 27) 

Sweden Stockholm 0.10 (0.02 to 0.18) 10 (2 to 18) 0.03 (-0.07 to 0.13) 3 (-7 to 13) 

Switzerland Zurich 0.31 (0.05 to 0.54) 13 (2 to 22) 0.23 (-0.02 to 0.48) 10 (-1 to 20) 

Taiwan Taipei 0.34 (-0.05 to 0.72) 131 (-21 to 276) 0.28 (-0.11 to 0.67) 109 (-43 to 258) 

UK London 0.10 (0.07 to 0.12) 63 (44 to 81) 0.06 (0.02 to 0.09) 37 (15 to 57) 

USA Los Angeles 0.41 (0.24 to 0.57) 242 (142 to 335) 0.36 (0.19 to 0.52) 211 (112 to 307) 

20 MCC countries 406 MCC cities 0.26 (0.24 to 0.28) 8,203 (3,525 to 12,840) 0.20 (0.18 to 0.22) 6,262 (1,413 to 11,065) 


