823 research outputs found

    A latitude-dependent wind model for Mira's cometary head

    Full text link
    We present a 3D numerical simulation of the recently discovered cometary structure produced as Mira travels through the galactic ISM. In our simulation, we consider that Mira ejects a steady, latitude-dependent wind, which interacts with a homogeneous, streaming environment. The axisymmetry of the problem is broken by the lack of alignment between the direction of the relative motion of the environment and the polar axis of the latitude-dependent wind. With this model, we are able to produce a cometary head with a ``double bow shock'' which agrees well with the structure of the head of Mira's comet. We therefore conclude that a time-dependence in the ejected wind is not required for reproducing the observed double bow shock.Comment: 4 pages, 4 figures, accepted for publication in ApJ

    A model of Mira's cometary head/tail entering the Local Bubble

    Full text link
    We model the cometary structure around Mira as the interaction of an AGB wind from Mira A, and a streaming environment. Our simulations introduce the following new element: we assume that after 200 kyr of evolution in a dense environment Mira entered the Local Bubble (low density coronal gas). As Mira enters the bubble, the head of the comet expands quite rapidly, while the tail remains well collimated for a 100 kyr timescale. The result is a broad-head/narrow-tail structure that resembles the observed morphology of Mira's comet. The simulations were carried out with our new adaptive grid code WALICXE, which is described in detail.Comment: 12 pages, 8 figures (4 in color). Accepted for publication in The Astrophysical Journa

    Emission lines from rotating proto-stellar jets with variable velocity profiles. I. Three-dimensional numerical simulation of the non-magnetic case

    Full text link
    Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a set of numerical simulations of heavy, supersonic, radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence). In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile, in agreement with some recent observational evidence found in jets from T Tauri stars which seems to support the presence of a rotation velocity pattern inside the jet beam, near the jet production region. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models. These findings lead us to put forward some caveats on the interpretation of the observed radial velocity distribution from a few outflows from young stellar objects, and we claim that these data should not be directly used as a doubtless confirmation of the magnetocentrifugal wind acceleration models.Comment: 15 pages, 8 figures. Accepted to publication in Astronomy and Astrophysic

    Filaments in Galactic Winds Driven by Young Stellar Clusters

    Full text link
    The starburst galaxy M82 shows a system of Hα\alpha-emitting filaments which extend to each side of the galactic disk. We model these filaments as the result of the interaction between the winds from a distribution of Super Stellar Clusters (SSCs). We first derive the condition necessary for producing a radiative interaction between the cluster winds (a condition which is met by the SSC distribution of M82). We then compute 3D simulations for SSC wind distributions which satisfy the condition for a radiative interaction, and also for distributions which do not satisfy this condition. We find that the highly radiative models, that result from the interaction of high metallicity cluster winds, produce a structure of Hα\alpha emitting filaments, which qualitatively agrees with the observations of the M82, while the non-radiative SSC wind interaction models do not produce filamentary structures. Therefore, our criterion for radiative interactions (which depends on the mass loss rate and the terminal velocity of the SSC winds, and the mean separation between SSCs) can be used to predict whether or not an observed galaxy should have associated Hα\alpha emitting filaments.Comment: 10 pages, 6 Figures. ApJ Accepted, August 7, 200

    A 3-mode, Variable Velocity Jet Model for HH 34

    Full text link
    Variable ejection velocity jet models can qualitatively explain the appearance of successive working surfaces in Herbig-Haro (HH) jets. This paper presents an attempt to explore which features of the HH-34 jet can indeed be reproduced by such a model. From previously published data on this object, we find evidence for the existence of a 3-mode ejection velocity variability, and then explore the implications of such a variability. From simple, analytic considerations it is possible to show that the longer period modes produce a modulation on the shorter period modes, resulting in the formation of ``trains'' of multiple knots. The knots observed close to the source of HH-34 could correspond to such a structure. Finally, a numerical simulation with the ejection velocity variability deduced from the HH-34 data is computed. This numerical simulation shows a quite remarkable resemblance with the observed properties of the HH-34 jet.Comment: 28 pages LaTex, 10 postscript figure

    Time-dependent ejection velocity model for the outflow of Hen 3--1475

    Full text link
    We present 2D axisymmetric and 3D numerical simulations of the proto-planetary nebula Hen 3-1475, which is characterized by a remarkably highly collimated optical jet, formed by a string of shock-excited knots along the axis of the nebula. It has recently been suggested that the kinematical and morphological properties of the Hen 3-1475 jet could be the result of an ejection variability of the central source (Riera et al. 2003). The observations suggest a periodic variability of the ejection velocity superimposed on a smoothly increasing ejection velocity ramp. From our numerical simulations, we have obtained intensity maps (for different optical emission lines) and position-velocity diagrams, in order to make a direct comparison with the HST observations of this object. Our numerical study allows us to conclude that a model of a precessing jet with a time-dependent ejection velocity, which is propagating into an ISM previously perturbed by an AGB wind, can succesfully explain both the morphological and the kinematical characteristics of this proto-planetary nebula.Comment: Astronomy and Astrophysics (accepted) (8 figures

    Winds from clu\sters with non-uniform stellar distributions

    Full text link
    We present analytic and numerical models of the `cluster wind' resulting from the multiple interactions of the winds ejected by the stars of a dense cluster of massive stars. We consider the case in which the distribution of stars (i.e., the number of stars per unit volume) within the cluster is spherically symmetric, has a power-law radial dependence, and drops discontinuously to zero at the outer radius of the cluster. We carry out comparisons between an analytic model (in which the stars are considered in terms of a spatially continuous injection of mass and energy) and 3D gasdynamic simulations (in which we include 100 stars with identical winds, located in 3D space by statistically sampling the stellar distribution function). From the analytic model, we find that for stellar distributions with steep enough radial dependencies the cluster wind flow develops a very high central density and a non-zero central velocity, and for steeper dependencies it becomes fully supersonic throughout the volume of the cluster (these properties are partially reproduced by the 3D numerical simulations). Therefore, the wind solutions obtained for stratified clusters can differ dramatically from the case of a homogeneous stellar distribution (which produces a cluster wind with zero central velocity, and a fully subsonic flow within the cluster radius). Finally, from our numerical simulations we compute predictions of X-ray emission maps and luminosities, which can be directly compared with observations of cluster wind flows.Comment: 10 pages, 11 figures. MNRAS - Accepted 2007 June 29. Received 2007 June 28; in original form 2007 May 2

    The X-ray Luminosities of HH Objects

    Full text link
    The recent detection of X-ray emission from HH 2 and HH 154 with the Chandra and XMM-Newton satellites (respectively) have opened up an interesting, new observational possibility in the field of Herbig-Haro objects. In order to be able to plan further X-ray observations of other HH objects, it is now of interest to be able to estimate their X-ray luminosities in order to choose which objects to observe. This paper describes a simple, analytic model for predicting the X-ray luminosity of a bow shock from the parameters of the flow (i.e., the size of the bow shock, its velocity, and the pre-shock density). The accuracy of the analytic model is analyzed through a comparison with the predictions obtained from axisymmetric, gasdynamic simulations of the leading working surface of an HH jet. We find that our analytic model reproduces the observed X-ray luminosities of HH 2 and HH 154, and we propose that HH~80/81 is a good candidate for future observations with Chandra.Comment: 10 pages (8 text, 2 figures
    corecore