823 research outputs found
A latitude-dependent wind model for Mira's cometary head
We present a 3D numerical simulation of the recently discovered cometary
structure produced as Mira travels through the galactic ISM. In our simulation,
we consider that Mira ejects a steady, latitude-dependent wind, which interacts
with a homogeneous, streaming environment. The axisymmetry of the problem is
broken by the lack of alignment between the direction of the relative motion of
the environment and the polar axis of the latitude-dependent wind. With this
model, we are able to produce a cometary head with a ``double bow shock'' which
agrees well with the structure of the head of Mira's comet. We therefore
conclude that a time-dependence in the ejected wind is not required for
reproducing the observed double bow shock.Comment: 4 pages, 4 figures, accepted for publication in ApJ
A model of Mira's cometary head/tail entering the Local Bubble
We model the cometary structure around Mira as the interaction of an AGB wind
from Mira A, and a streaming environment. Our simulations introduce the
following new element: we assume that after 200 kyr of evolution in a dense
environment Mira entered the Local Bubble (low density coronal gas). As Mira
enters the bubble, the head of the comet expands quite rapidly, while the tail
remains well collimated for a 100 kyr timescale. The result is a
broad-head/narrow-tail structure that resembles the observed morphology of
Mira's comet. The simulations were carried out with our new adaptive grid code
WALICXE, which is described in detail.Comment: 12 pages, 8 figures (4 in color). Accepted for publication in The
Astrophysical Journa
Emission lines from rotating proto-stellar jets with variable velocity profiles. I. Three-dimensional numerical simulation of the non-magnetic case
Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a
set of numerical simulations of heavy, supersonic, radiatively cooling jets
including variabilities in both the ejection direction (precession) and the jet
velocity (intermittence). In order to investigate the effects of jet rotation
on the shape of the line profiles, we also introduce an initial toroidal
rotation velocity profile, in agreement with some recent observational evidence
found in jets from T Tauri stars which seems to support the presence of a
rotation velocity pattern inside the jet beam, near the jet production region.
Since the Yguazu-a code includes an atomic/ionic network, we are able to
compute the emission coefficients for several emission lines, and we generate
line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using
initial parameters that are suitable for the DG Tau microjet, we show that the
computed radial velocity shift for the medium-velocity component of the line
profile as a function of distance from the jet axis is strikingly similar for
rotating and non-rotating jet models. These findings lead us to put forward
some caveats on the interpretation of the observed radial velocity distribution
from a few outflows from young stellar objects, and we claim that these data
should not be directly used as a doubtless confirmation of the
magnetocentrifugal wind acceleration models.Comment: 15 pages, 8 figures. Accepted to publication in Astronomy and
Astrophysic
Filaments in Galactic Winds Driven by Young Stellar Clusters
The starburst galaxy M82 shows a system of H-emitting filaments which
extend to each side of the galactic disk. We model these filaments as the
result of the interaction between the winds from a distribution of Super
Stellar Clusters (SSCs). We first derive the condition necessary for producing
a radiative interaction between the cluster winds (a condition which is met by
the SSC distribution of M82). We then compute 3D simulations for SSC wind
distributions which satisfy the condition for a radiative interaction, and also
for distributions which do not satisfy this condition. We find that the highly
radiative models, that result from the interaction of high metallicity cluster
winds, produce a structure of H emitting filaments, which qualitatively
agrees with the observations of the M82, while the non-radiative SSC wind
interaction models do not produce filamentary structures. Therefore, our
criterion for radiative interactions (which depends on the mass loss rate and
the terminal velocity of the SSC winds, and the mean separation between SSCs)
can be used to predict whether or not an observed galaxy should have associated
H emitting filaments.Comment: 10 pages, 6 Figures. ApJ Accepted, August 7, 200
A 3-mode, Variable Velocity Jet Model for HH 34
Variable ejection velocity jet models can qualitatively explain the
appearance of successive working surfaces in Herbig-Haro (HH) jets. This paper
presents an attempt to explore which features of the HH-34 jet can indeed be
reproduced by such a model. From previously published data on this object, we
find evidence for the existence of a 3-mode ejection velocity variability, and
then explore the implications of such a variability. From simple, analytic
considerations it is possible to show that the longer period modes produce a
modulation on the shorter period modes, resulting in the formation of
``trains'' of multiple knots. The knots observed close to the source of HH-34
could correspond to such a structure. Finally, a numerical simulation with the
ejection velocity variability deduced from the HH-34 data is computed. This
numerical simulation shows a quite remarkable resemblance with the observed
properties of the HH-34 jet.Comment: 28 pages LaTex, 10 postscript figure
Time-dependent ejection velocity model for the outflow of Hen 3--1475
We present 2D axisymmetric and 3D numerical simulations of the
proto-planetary nebula Hen 3-1475, which is characterized by a remarkably
highly collimated optical jet, formed by a string of shock-excited knots along
the axis of the nebula. It has recently been suggested that the kinematical and
morphological properties of the Hen 3-1475 jet could be the result of an
ejection variability of the central source (Riera et al. 2003). The
observations suggest a periodic variability of the ejection velocity
superimposed on a smoothly increasing ejection velocity ramp. From our
numerical simulations, we have obtained intensity maps (for different optical
emission lines) and position-velocity diagrams, in order to make a direct
comparison with the HST observations of this object. Our numerical study allows
us to conclude that a model of a precessing jet with a time-dependent ejection
velocity, which is propagating into an ISM previously perturbed by an AGB wind,
can succesfully explain both the morphological and the kinematical
characteristics of this proto-planetary nebula.Comment: Astronomy and Astrophysics (accepted) (8 figures
Winds from clu\sters with non-uniform stellar distributions
We present analytic and numerical models of the `cluster wind' resulting from
the multiple interactions of the winds ejected by the stars of a dense cluster
of massive stars. We consider the case in which the distribution of stars
(i.e., the number of stars per unit volume) within the cluster is spherically
symmetric, has a power-law radial dependence, and drops discontinuously to zero
at the outer radius of the cluster. We carry out comparisons between an
analytic model (in which the stars are considered in terms of a spatially
continuous injection of mass and energy) and 3D gasdynamic simulations (in
which we include 100 stars with identical winds, located in 3D space by
statistically sampling the stellar distribution function). From the analytic
model, we find that for stellar distributions with steep enough radial
dependencies the cluster wind flow develops a very high central density and a
non-zero central velocity, and for steeper dependencies it becomes fully
supersonic throughout the volume of the cluster (these properties are partially
reproduced by the 3D numerical simulations). Therefore, the wind solutions
obtained for stratified clusters can differ dramatically from the case of a
homogeneous stellar distribution (which produces a cluster wind with zero
central velocity, and a fully subsonic flow within the cluster radius).
Finally, from our numerical simulations we compute predictions of X-ray
emission maps and luminosities, which can be directly compared with
observations of cluster wind flows.Comment: 10 pages, 11 figures. MNRAS - Accepted 2007 June 29. Received 2007
June 28; in original form 2007 May 2
The X-ray Luminosities of HH Objects
The recent detection of X-ray emission from HH 2 and HH 154 with the Chandra
and XMM-Newton satellites (respectively) have opened up an interesting, new
observational possibility in the field of Herbig-Haro objects. In order to be
able to plan further X-ray observations of other HH objects, it is now of
interest to be able to estimate their X-ray luminosities in order to choose
which objects to observe. This paper describes a simple, analytic model for
predicting the X-ray luminosity of a bow shock from the parameters of the flow
(i.e., the size of the bow shock, its velocity, and the pre-shock density). The
accuracy of the analytic model is analyzed through a comparison with the
predictions obtained from axisymmetric, gasdynamic simulations of the leading
working surface of an HH jet. We find that our analytic model reproduces the
observed X-ray luminosities of HH 2 and HH 154, and we propose that HH~80/81 is
a good candidate for future observations with Chandra.Comment: 10 pages (8 text, 2 figures
- …