93 research outputs found

    The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy.

    Get PDF
    BackgroundTumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma.Methodology/principal findingsHere, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D) spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226) and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro.Conclusion/significanceThis work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. We believe that the methods developed here may apply to the studies of other tumor-targeting antibodies and immunoconjugates in vitro

    Consensus Report of the 2015 Weinman International Conference on Mesothelioma.

    Get PDF
    On November 9 and 10, 2015, the International Conference on Mesothelioma in Populations Exposed to Naturally Occurring Asbestiform Fibers was held at the University of Hawaii Cancer Center in Honolulu, Hawaii. The meeting was cosponsored by the International Association for the Study of Lung Cancer, and the agenda was designed with significant input from staff at the U.S. National Cancer Institute and National Institute of Environmental Health Sciences. A multidisciplinary group of participants presented updates reflecting a range of disciplinary perspectives, including mineralogy, geology, epidemiology, toxicology, biochemistry, molecular biology, genetics, public health, and clinical oncology. The group identified knowledge gaps that are barriers to preventing and treating malignant mesothelioma (MM) and the required next steps to address barriers. This manuscript reports the group's efforts and focus on strategies to limit risk to the population and reduce the incidence of MM. Four main topics were explored: genetic risk, environmental exposure, biomarkers, and clinical interventions. Genetics plays a critical role in MM when the disease occurs in carriers of germline BRCA1 associated protein 1 mutations. Moreover, it appears likely that, in addition to BRCA1 associated protein 1, other yet unknown genetic variants may also influence the individual risk for development of MM, especially after exposure to asbestos and related mineral fibers. MM is an almost entirely preventable malignancy as it is most often caused by exposure to commercial asbestos or mineral fibers with asbestos-like health effects, such as erionite. In the past in North America and in Europe, the most prominent source of exposure was related to occupation. Present regulations have reduced occupational exposure in these countries; however, some people continue to be exposed to previously installed asbestos in older construction and other settings. Moreover, an increasing number of people are being exposed in rural areas that contain noncommercial asbestos, erionite, and other mineral fibers in soil or rock (termed naturally occurring asbestos [NOA]) and are being developed. Public health authorities, scientists, residents, and other affected groups must work together in the areas where exposure to asbestos, including NOA, has been documented in the environment to mitigate or reduce this exposure. Although a blood biomarker validated to be effective for use in screening and identifying MM at an early stage in asbestos/NOA-exposed populations is not currently available, novel biomarkers presented at the meeting, such as high mobility group box 1 and fibulin-3, are promising. There was general agreement that current treatment for MM, which is based on surgery and standard chemotherapy, has a modest effect on the overall survival (OS), which remains dismal. Additionally, although much needed novel therapeutic approaches for MM are being developed and explored in clinical trials, there is a critical need to invest in prevention research, in which there is a great opportunity to reduce the incidence and mortality from MM

    Tumour-derived GM-CSF promotes granulocyte immunosuppression in mesothelioma patients

    Get PDF
    Abstract Purpose: The cross-talk between tumor cells, myeloid cells, and T cells can play a critical role in tumor pathogenesis and response to immunotherapies. Although the etiology of mesothelioma is well understood, the impact of mesothelioma tumor cells on the surrounding immune microenvironment is less well studied. In this study, the effect of the mesothelioma tumor microenvironment on circulating and infiltrating granulocytes and T cells is investigated. Experimental Design: Tumor tissues and peripheral blood from mesothelioma patients were evaluated for presence of granulocytes, which were then tested for their T-cell suppression potential. Different cocultures of granulocytes and/or mesothelioma tumor cells and/or T cells were set up to identify the mechanism of T-cell inhibition. Results: Analysis of human tumors showed that the mesothelioma microenvironment is enriched in infiltrating granulocytes, which inhibit T-cell proliferation and activation. Characterization of the whole blood at diagnosis identified similar, circulating, immunosuppressive CD11b+CD15+HLADR− granulocytes at increased frequency compared with healthy controls. Culture of healthy-donor granulocytes with human mesothelioma cells showed that GM-CSF upregulates NOX2 expression and the release of reactive oxygen species (ROS) from granulocytes, resulting in T-cell suppression. Immunohistochemistry and transcriptomic analysis revealed that a majority of mesothelioma tumors express GM-CSF and that higher GM-CSF expression correlated with clinical progression. Blockade of GM-CSF with neutralizing antibody, or ROS inhibition, restored T-cell proliferation, suggesting that targeting of GM-CSF could be of therapeutic benefit in these patients. Conclusions: Our study presents the mechanism behind the cross-talk between mesothelioma tumors and the immune microenvironment and indicates that targeting GM-CSF could be a novel treatment strategy to augment immunotherapy in patients with mesothelioma. Clin Cancer Res; 24(12); 2859–72. ©2018 AACR.</jats:p

    DPEP1 Inhibits Tumor Cell Invasiveness, Enhances Chemosensitivity and Predicts Clinical Outcome in Pancreatic Ductal Adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. To identify biologically relevant genes with prognostic and therapeutic significance in PDAC, we first performed the microarray gene-expression profiling in 45 matching pairs of tumor and adjacent non-tumor tissues from resected PDAC cases. We identified 36 genes that were associated with patient outcome and also differentially expressed in tumors as compared with adjacent non-tumor tissues in microarray analysis. Further evaluation in an independent validation cohort (N = 27) confirmed that DPEP1 (dipeptidase 1) expression was decreased (T: N ratio ∼0.1, P<0.01) in tumors as compared with non-tumor tissues. DPEP1 gene expression was negatively correlated with histological grade (Spearman correlation coefficient = −0.35, P = 0.004). Lower expression of DPEP1 in tumors was associated with poor survival (Kaplan Meier log rank) in both test cohort (P = 0.035) and validation cohort (P = 0.016). DPEP1 expression was independently associated with cancer-specific mortality when adjusted for tumor stage and resection margin status in both univariate (hazard ratio = 0.43, 95%CI = 0.24–0.76, P = 0.004) and multivariate analyses (hazard ratio = 0.51, 95%CI = 0.27–0.94, P = 0.032). We further demonstrated that overexpression of DPEP1 suppressed tumor cells invasiveness and increased sensitivity to chemotherapeutic agent Gemcitabine. Our data also showed that growth factor EGF treatment decreased DPEP1 expression and MEK1/2 inhibitor AZD6244 increased DPEP1 expression in vitro, indicating a potential mechanism for DPEP1 gene regulation. Therefore, we provide evidence that DPEP1 plays a role in pancreatic cancer aggressiveness and predicts outcome in patients with resected PDAC. In view of these findings, we propose that DPEP1 may be a candidate target in PDAC for designing improved treatments

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    In Vivo Imaging of Human Malignant Mesothelioma Grown Orthotopically in the Peritoneal Cavity of Nude Mice

    No full text
    <p>Malignant mesothelioma (MM) causes significant morbidity and mortality in patients. With increasing efforts devoted to developing therapeutics targeting mesothelioma, a xenograft mouse model with <i>in vivo</i> tumor imaging is especially desired for evaluating anti-tumor therapies. In the present study, we fluorescently labeled the NCI-H226 human mesothelioma cell line by a lentiviral vector harboring a luciferase-GFP (Luc/GFP) fusion gene driven by the RNA polymerase II promoter. After single-cell cloning by flow cytometry, a clone (named LMB-H226-GL) that stably expresses high levels of Luc/GFP was obtained. The<i> in vivo </i>tumorigenicity of Luc/GFP-labeled LMB-H226-GL was determined by using intraperitoneal injections of the cells in nude mice. LMB-H226-GL was found to be able to consistently form solid tumors in the peritoneum of mice. Tumor growth and aggressive progression could be quantitated via <i>in vivo</i> bioluminescence imaging. The model exhibited the pathological hallmarks consistent with the clinical progression of MM in terms of tumor growth and spread inside the peritoneal cavity. To evaluate the <i>in vivo</i> efficacy of drugs targeting mesothelioma, we treated mice with SS1P, a recombinant immunotoxin currently evaluated in Phase II clinical trials for treatment of mesothelioma. All the tumor-bearing mice had a significant response to SS1P treatment. Our results showed that this is a well-suited model for mesothelioma, and may be useful for evaluating other novel agents for mesothelioma treatment <i>in vivo</i>.</p
    corecore