83 research outputs found

    Neural fate of seen and unseen faces in visuospatial neglect: A combined event-related functional MRI and event-related potential study

    Get PDF
    This is a post print version of the article. The official published version can be obtained from the link below.To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception. Right parietal damage may cause a loss of awareness for contralateral (left) sensory inputs, such as hemispatial neglect and extinction (1–3). Visual extinction is the failure to perceive a stimulus in the contralesional field when presented together with an ipsilesional stimulus (bilateral simultaneous stimulation, BSS), even though occipital visual areas are intact and unilateral contralesional stimuli can be perceived when presented alone. It reflects a deficit of spatial attention toward the contralesional side, excluding left inputs from awareness in the presence of competing stimuli (2, 3). Spatial attention involves a complex neural network centered on the right parietal lobe (4, 5), but how parietal and related areas interact with sensory processing in distant cortices is largely unknown. Here we combined event-related functional MRI (fMRI) and event-related potentials (ERPs) to study the regional pattern and temporal course of brain activity produced by seen and unseen stimuli in a patient with chronic neglect and extinction caused by parietal damage. In keeping with intact early visual areas in such patients, behavioral studies suggest that some residual processing may still occur for contralesional stimuli without attention, or without awareness, including “preattentive” grouping (e.g., refs. 6 and 7) and semantic priming (e.g., ref. 8). It has been speculated (3, 9) that such effects might relate to separate cortical visual streams, with temporal areas extracting object features for identification, and parietal areas encoding spatial locations and parameters for action (10). Because neglect and extinction follow parietal damage, residual perceptual and semantic processing still might occur in occipital and temporal cortex without awareness, in the absence of normal integration with concomitant processing in parietal regions. Our study tested this hypothesis by using event-related imaging and electrophysiology measures, which are widely used to study mechanisms of normal attention (11, 12). There have been few imaging (e.g., ref. 13) or ERP (e.g., ref. 14) studies in neglect, and most examined activity at rest or during passive unilateral visual stimulation, rather than in relation to awareness or extinction on bilateral stimulation. However, a recent ERP study (15) found signals evoked by perceived, but not extinguished, visual stimuli in a parietal patient. By contrast, functional imaging in another patient (16) showed activation of striate cortex by extinguished stimuli, although severe extinction on all bilateral stimuli precluded any comparison with normal perception. In our patient we used both fMRI and ERPs during a similar extinction task to determine the neural correlates of two critical conditions: (i) when contralesional stimuli are extinguished, and (ii) when the same stimuli are seen. Stimulus presentation was arranged so as to obtain a balanced number of extinguished and seen contralesional events across all bilateral trials. Like Rees et al. (16), we used face stimuli to exploit previous knowledge that face processing activates fusiform areas in temporal cortex (e.g., refs. 17 and 18), and elicits characteristic potentials 170–200 ms after stimulus onset (e.g., refs. 19–21) in addition to other visual components such as P1 and N1 (e.g., ref. 11). We reasoned that such responses might help trace the neural fate of contralesional stimuli (seen or extinguished) at both early and later processing stages in the visual system

    Derangement of body representation in complex regional pain syndrome: report of a case treated with mirror and prisms

    Get PDF
    Perhaps the most intriguing disorders of body representation are those that are not due to primary disease of brain tissue. Strange and sometimes painful phantom limb sensations can result from loss of afference to the brain; and Complex Regional Pain Syndrome (CRPS)—the subject of the current report—can follow limb trauma without pathology of either the central or peripheral nervous system. This enigmatic and vexing condition follows relatively minor trauma, and can result in enduring misery and a useless limb. It manifests as severe pain, autonomic dysfunction, motor disability and ‘neglect-like’ symptoms with distorted body representation. For this special issue on body representation we describe the case of a patient suffering from CRPS, including symptoms suggesting a distorted representation of the affected limb. We report contrasting effects of mirror box therapy, as well as a new treatment—prism adaptation therapy—that provided sustained pain relief and reduced disability. The benefits were contingent upon adapting with the affected limb. Other novel observations suggest that: (1) pain may be a consequence, not the cause, of a disturbance of body representation that gives rise to the syndrome; (2) immobilisation, not pain, may precipitate this reorganisation of somatomotor circuits in susceptible individuals; and (3) limitation of voluntary movement is neither due to pain nor to weakness but, rather, to derangement of body representation which renders certain postures from the repertoire of hand movements inaccessible

    The neural correlates of social attention: automatic orienting to social and nonsocial cues

    Get PDF
    Previous evidence suggests that directional social cues (e.g., eye gaze) cause automatic shifts in attention toward gaze direction. It has been proposed that automatic attentional orienting driven by social cues (social orienting) involves a different neural network from automatic orienting driven by nonsocial cues. However, previous neuroimaging studies on social orienting have only compared gaze cues to symbolic cues, which typically engage top-down mechanisms. Therefore, we directly compared the neural activity involved in social orienting to that involved in purely automatic nonsocial orienting. Twenty participants performed a spatial cueing task consisting of social (gaze) cues and automatic nonsocial (peripheral squares) cues presented at short and long stimulus (cue-to-target) onset asynchronies (SOA), while undergoing fMRI. Behaviorally, a facilitation effect was found for both cue types at the short SOA, while an inhibitory effect (inhibition of return: IOR) was found only for nonsocial cues at the long SOA. Imaging results demonstrated that social and nonsocial cues recruited a largely overlapping fronto-parietal network. In addition, social cueing evoked greater activity in occipito-temporal regions at both SOAs, while nonsocial cueing recruited greater subcortical activity, but only for the long SOA (when IOR was found). A control experiment, including central arrow cues, confirmed that the occipito-temporal activity was at least in part due to the social nature of the cue and not simply to the location of presentation (central vs. peripheral). These results suggest an evolutionary trajectory for automatic orienting, from predominantly subcortical mechanisms for nonsocial orienting to predominantly cortical mechanisms for social orienting

    Novel MicroRNA Candidates and miRNA-mRNA Pairs in Embryonic Stem (ES) Cells

    Get PDF
    MicroRNAS (miRNAS: a class of short non-coding RNAs) are emerging as important agents of post transcriptional gene regulation and integral components of gene networks. MiRNAs have been strongly linked to stem cells, which have a remarkable dual role in development. They can either continuously replenish themselves (self-renewal), or differentiate into cells that execute a limited number of specific actions (pluripotence).In order to identify novel miRNAs from narrow windows of development we carried out an in silico search for micro-conserved elements (MCE) in adult tissue progenitor transcript sequences. A plethora of previously unknown miRNA candidates were revealed including 545 small RNAs that are enriched in embryonic stem (ES) cells over adult cells. Approximately 20% of these novel candidates are down-regulated in ES (Dicer(-/-)) ES cells that are impaired in miRNA maturation. The ES-enriched miRNA candidates exhibit distinct and opposite expression trends from mmu-mirs (an abundant class in adult tissues) during retinoic acid (RA)-induced ES cell differentiation. Significant perturbation of trends is found in both miRNAs and novel candidates in ES (GCNF(-/-)) cells, which display loss of repression of pluripotence genes upon differentiation.Combining expression profile information with miRNA target prediction, we identified miRNA-mRNA pairs that correlate with ES cell pluripotence and differentiation. Perturbation of these pairs in the ES (GCNF(-/-)) mutant suggests a role for miRNAs in the core regulatory networks underlying ES cell self-renewal, pluripotence and differentiation

    What Happens in Between? Human Oscillatory Brain Activity Related to Crossmodal Spatial Cueing

    Get PDF
    Previous studies investigated the effects of crossmodal spatial attention by comparing the responses to validly versus invalidly cued target stimuli. Dynamics of cortical rhythms in the time interval between cue and target might contribute to cue effects on performance. Here, we studied the influence of spatial attention on ongoing oscillatory brain activity in the interval between cue and target onset. In a first experiment, subjects underwent periods of tactile stimulation (cue) followed by visual stimulation (target) in a spatial cueing task as well as tactile stimulation as a control. In a second experiment, cue validity was modified to be 50%, 75%, or else 25%, to separate effects of exogenous shifts of attention caused by tactile stimuli from that of endogenous shifts. Tactile stimuli produced: 1) a stronger lateralization of the sensorimotor beta-rhythm rebound (15–22 Hz) after tactile stimuli serving as cues versus not serving as cues; 2) a suppression of the occipital alpha-rhythm (7–13 Hz) appearing only in the cueing task (this suppression was stronger contralateral to the endogenously attended side and was predictive of behavioral success); 3) an increase of prefrontal gamma-activity (25–35 Hz) specifically in the cueing task. We measured cue-related modulations of cortical rhythms which may accompany crossmodal spatial attention, expectation or decision, and therefore contribute to cue validity effects. The clearly lateralized alpha suppression after tactile cues in our data indicates its dependence on endogenous rather than exogenous shifts of visuo-spatial attention following a cue independent of its modality

    The Role of Recombination for the Coevolutionary Dynamics of HIV and the Immune Response

    Get PDF
    The evolutionary implications of recombination in HIV remain not fully understood. A plausible effect could be an enhancement of immune escape from cytotoxic T lymphocytes (CTLs). In order to test this hypothesis, we constructed a population dynamic model of immune escape in HIV and examined the viral-immune dynamics with and without recombination. Our model shows that recombination (i) increases the genetic diversity of the viral population, (ii) accelerates the emergence of escape mutations with and without compensatory mutations, and (iii) accelerates the acquisition of immune escape mutations in the early stage of viral infection. We see a particularly strong impact of recombination in systems with broad, non-immunodominant CTL responses. Overall, our study argues for the importance of recombination in HIV in allowing the virus to adapt to changing selective pressures as imposed by the immune system and shows that the effect of recombination depends on the immunodominance pattern of effector T cell responses

    Estimating the Fitness Cost of Escape from HLA Presentation in HIV-1 Protease and Reverse Transcriptase

    Get PDF
    Human immunodeficiency virus (HIV-1) is, like most pathogens, under selective pressure to escape the immune system of its host. In particular, HIV-1 can avoid recognition by cytotoxic T lymphocytes (CTLs) by altering the binding affinity of viral peptides to human leukocyte antigen (HLA) molecules, the role of which is to present those peptides to the immune system. It is generally assumed that HLA escape mutations carry a replicative fitness cost, but these costs have not been quantified. In this study, we assess the replicative cost of mutations which are likely to escape presentation by HLA molecules in the region of HIV-1 protease and reverse transcriptase. Specifically, we combine computational approaches for prediction of in vitro replicative fitness and peptide binding affinity to HLA molecules. We find that mutations which impair binding to HLA-A molecules tend to have lower in vitro replicative fitness than mutations which do not impair binding to HLA-A molecules, suggesting that HLA-A escape mutations carry higher fitness costs than non-escape mutations. We argue that the association between fitness and HLA-A binding impairment is probably due to an intrinsic cost of escape from HLA-A molecules, and these costs are particularly strong for HLA-A alleles associated with efficient virus control. Counter-intuitively, we do not observe a significant effect in the case of HLA-B, but, as discussed, this does not argue against the relevance of HLA-B in virus control. Overall, this article points to the intriguing possibility that HLA-A molecules preferentially target more conserved regions of HIV-1, emphasizing the importance of HLA-A genes in the evolution of HIV-1 and RNA viruses in general

    Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating

    Get PDF
    Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception
    corecore