204 research outputs found

    Tunable operation of a gain-switched diode laser by nonresonant self-injection seeding

    Get PDF
    In this letter, we report tunable operation of a gain-switched diode laser by nonresonant self-injection seeding from an uncoated glass slide used as an external cavity reflector. A spectral linewidth reduction from 11 to 0.05 nm has been achieved for picosecond pulses with little effect on other laser characteristics. Good agreement with numerical simulations based on a compound-cavity laser model is also reported

    Nonresonant self-injection seeding of a gain-switched diode laser

    Get PDF
    We demonstrate step-tunable single-mode operation of a gain-switched diode laser by nonresonant self-injection seeding from an uncoated glass slide used as an external cavity reflector. A spectral bandwidth reduction from 11 mn to 0.05 nm and wavelength tunability has been achieved for picosecond (near-transform-limited) pulses with little effect on other laser characteristics. Good agreement with numerical simulations based on a compound-cavity laser model is also reported

    Non-invasive biomedical research and diagnostics enabled by innovative compact lasers

    Get PDF
    For over half a century, laser technology has undergone a technological revolution. These technologies, particularly semiconductor lasers, are employed in a myriad of fields. Optical medical diagnostics, one of the emerging areas of laser application, are on the forefront of application around the world. Optical methods of non- or minimally invasive bio-tissue investigation offer significant advantages over alternative methods, including rapid real-time measurement, non-invasiveness and high resolution (guaranteeing the safety of a patient). These advantages demonstrate the growing success of such techniques. In this review, we will outline the recent status of laser technology applied in the biomedical field, focusing on the various available approaches, particularly utilising compact semiconductor lasers. We will further consider the advancement and integration of several complimentary biophotonic techniques into single multimodal devices, the potential impact of such devices and their future applications. Based on our own studies, we will also cover the simultaneous collection of physiological data with the aid a multifunctional diagnostics system, concentrating on the optimisation of the new technology towards a clinical application. Such data is invaluable for developing algorithms capable of delivering consistent, reliable and meaningful diagnostic information, which can ultimately be employed for the early diagnosis of disease conditions in individuals from around the world

    Infrared laser pulse triggers increased singlet oxygen production in tumour cells

    Get PDF
    Photodynamic therapy (PDT) is a technique developed to treat the ever-increasing global incidence of cancer. This technique utilises singlet oxygen (1O2) generation via a laser excited photosensitiser (PS) to kill cancer cells. However, prolonged sensitivity to intensive light (6–8 weeks for lung cancer), relatively low tissue penetration by activating light (630 nm up to 4 mm), and the cost of PS administration can limit progressive PDT applications. The development of quantum-dot laser diodes emitting in the highest absorption region (1268 nm) of triplet oxygen (3O2) presents the possibility of inducing apoptosis in tumour cells through direct 3O2 → 1O2 transition. Here we demonstrate that a single laser pulse triggers dose-dependent 1O2 generation in both normal keratinocytes and tumour cells and show that tumour cells yield the highest 1O2 far beyond the initial laser pulse exposure. Our modelling and experimental results support the development of direct infrared (IR) laser-induced tumour treatment as a promising approach in tumour PDT

    Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 mu m

    Get PDF
    The authors report a direct measurement of the absorption dynamics in an InAs p-i-n ridge waveguide quantum dot modulator. The carrier escape mechanisms are investigated via subpicosecond pump-probe measurements at room temperature, under reverse bias conditions. The optical pulses employed are degenerate in wavelength with the quantum dot ground state transition at 1.28 mu m. The absorption change recovers with characteristic times ranging from 62 ps (0 V) to similar to 700 fs (-10 V), showing a decrease of nearly two orders of magnitude. The authors show that at low applied fields, this recovery is attributed to thermionic emission while for higher applied fields, tunneling becomes the dominant mechanism. (c) 2006 American Institute of Physics.</p

    216 MHz repetition rate passively mode-locked electrically-pumped VECSEL

    Get PDF
    Electrically pumped vertical external cavity surface emitting laser is passively mode-locked at record-low repetition rate of 216 MHz demonstrating potential peak power scalability. A quantum dot saturable absorber is used to achieve stable operation

    Computational model of bladder tissue based on its measured optical properties

    Get PDF
    Urinary bladder diseases are a common problem throughout the world and often difficult to accurately diagnose. Furthermore, they pose a heavy financial burden on health services. Urinary bladder tissue from male pigs was spectrophotometrically measured and the resulting data used to calculate the absorption, transmission, and reflectance parameters, along with the derived coefficients of scattering and absorption. These were employed to create a "generic" computational bladder model based on optical properties, simulating the propagation of photons through the tissue at different wavelengths. Using the Monte-Carlo method and fluorescence spectra of UV and blue excited wavelength, diagnostically important biomarkers were modeled. Additionally, the multifunctional noninvasive diagnostics system "LAKK-M" was used to gather fluorescence data to further provide essential comparisons. The ultimate goal of the study was to successfully simulate the effects of varying excited radiation wavelengths on bladder tissue to determine the effectiveness of photonics diagnostic devices. With increased accuracy, this model could be used to reliably aid in differentiating healthy and pathological tissues within the bladder and potentially other hollow organs

    High peak power sub-60 fs Yb:KGW laser

    Get PDF
    A high power sub-60 fs mode-locked diode-pumped Yb: KGW laser based on hybrid action of an InGaAs quantum-dot saturable absorber mirror and Kerr-lens mode locking was demonstrated. The laser delivered 56 fs pulses with 1.95 W of average power corresponding to 450 kW of peak power. The spectral bandwidth of the pulse was 20.5 nm, which was near the gain bandwidth limit of the Yb:KGW crystal. To the best of our knowledge, these are the shortest pulses generated from the monoclinic double tungstate crystals (and Yb:KGW laser crystal in particular) and the most powerful in the sub-60 fs regime. At the same time they are also the shortest pulses produced to date with the help of a quantum-dot-based saturable absorber

    A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    Get PDF
    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment

    Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Get PDF
    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a "gold key” has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research
    corecore