8 research outputs found

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Formaldehyde-Induced Aggravation of Pruritus and Dermatitis Is Associated with the Elevated Expression of Th1 Cytokines in a Rat Model of Atopic Dermatitis.

    No full text
    Atopic dermatitis is a complex disease of heterogeneous pathogenesis, in particular, genetic predisposition, environmental triggers, and their interactions. Indoor air pollution, increasing with urbanization, plays a role as environmental risk factor in the development of AD. However, we still lack a detailed picture of the role of air pollution in the development of the disease. Here, we examined the effect of formaldehyde (FA) exposure on the manifestation of atopic dermatitis and the underlying molecular mechanism in naive rats and in a rat model of atopic dermatitis (AD) produced by neonatal capsaicin treatment. The AD and naive rats were exposed to 0.8 ppm FA, 1.2 ppm FA, or fresh air (Air) for 6 weeks (2 hours/day and 5 days/week). So, six groups, namely the 1.2 FA-AD, 0.8 FA-AD, Air-AD, 1.2 FA-naive, 0.8 FA-naive and Air-naive groups, were established. Pruritus and dermatitis, two major symptoms of atopic dermatitis, were evaluated every week for 6 weeks. After that, samples of the blood, the skin and the thymus were collected from the 1.2 FA-AD, the Air-AD, the 1.2 FA-naive and the Air-naive groups. Serum IgE levels were quantified with ELISA, and mRNA expression levels of inflammatory cytokines from extracts of the skin and the thymus were calculated with qRT-PCR. The dermatitis and pruritus significantly worsened in 1.2 FA-AD group, but not in 0.8 FA-AD, compared to the Air-AD animals, whereas FA didn't induce any symptoms in naive rats. Consistently, the levels of serum IgE were significantly higher in 1.2 FA-AD than in air-AD, however, there was no significant difference following FA exposure in naive animals. In the skin, mRNA expression levels of Th1 cytokines such as TNF-α and IL-1β were significantly higher in the 1.2 FA-AD rats compared to the air-AD rats, whereas mRNA expression levels of Th2 cytokines (IL-4, IL-5, IL-13), IL-17A and TSLP were significantly higher in 1.2 FA-naive group than in the Air-naive group. These results suggested that 1.2 ppm of FA penetrated the injured skin barrier, and exacerbated Th1 responses and serum IgE level in the AD rats so that dermatitis and pruritus were aggravated, while the elevated expression of Th2 cytokines by 1.2 ppm of FA in naive rats was probably insufficient for clinical manifestation. In conclusion, in a rat model of atopic dermatitis, exposure to 1.2 ppm of FA aggravated pruritus and skin inflammation, which was associated with the elevated expression of Th1 cytokines

    Aggravation of scratch and dermatitis, and increase in serum IgE level by FA exposure in AD rats.

    No full text
    <p>Photographs show dermatitis in the 5<sup>th</sup> week. (A). The 1.2 FA-AD, but not 0.8 FA-AD, group shows significantly more severe scratch behavior (B) and dermatitis (D), compared to the Air-AD group. The 1.2 FA-AD group also shows significantly higher serum IgE level compared to the Air-AD group (F). However, there is no change in the symptoms (C & E) and serum IgE level (F) in naive groups. There is no significant difference in body weight among the six groups (G). Abbreviations; 1.2: 1.2 ppm, 0.8: 0.8 ppm, FA: formaldehyde, AD: atopic dermatitis, Air: fresh air. *<i>p<</i>0.05, ***<i>p<</i>0.001.</p

    Elevation of expression of skin Th2 cytokines, IL-17A and TSLP by FA exposure in naive rats.

    No full text
    <p>The 1.2 FA-naive group shows significantly higher expression of Th2 cytokines such as IL-4, -5, and -13 (A~C), IL-17A (D) and TSLP (E) compared to the Air-naive group. However, the 1.2 FA-AD group does not show any significant difference in the expression level of Th2 cytokines (A~C), IL-17A (D) and TSLP (E) compared to the Air-AD group (A~E). Expression level of some of Th2 cytokines such as IL-4 (A) and IL-13 (B) is significantly higher in the Air-AD group than in the FA-naive group. Abbreviations; 1.2: 1.2 ppm, FA: formaldehyde, AD: atopic dermatitis, Air: fresh air. *<i>p<</i>0.05.</p

    No change in expression of Th2 and Th1 cytokines by FA exposure in the thymus.

    No full text
    <p>No significant change in Th2 cytokines such as IL-4, IL-5 and IL-13, TSLP, IL-17A (A), and Th1 cytokines including TNF-α and IL-1β (B) in the thymus following exposure to 1.2 ppm of FA in both AD and naive rats. Abbreviations; 1.2: 1.2 ppm, FA: formaldehyde, AD: atopic dermatitis, Air: fresh air.</p

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore