2,167 research outputs found
Architecture-Aware Configuration and Scheduling of Matrix Multiplication on Asymmetric Multicore Processors
Asymmetric multicore processors (AMPs) have recently emerged as an appealing
technology for severely energy-constrained environments, especially in mobile
appliances where heterogeneity in applications is mainstream. In addition,
given the growing interest for low-power high performance computing, this type
of architectures is also being investigated as a means to improve the
throughput-per-Watt of complex scientific applications.
In this paper, we design and embed several architecture-aware optimizations
into a multi-threaded general matrix multiplication (gemm), a key operation of
the BLAS, in order to obtain a high performance implementation for ARM
big.LITTLE AMPs. Our solution is based on the reference implementation of gemm
in the BLIS library, and integrates a cache-aware configuration as well as
asymmetric--static and dynamic scheduling strategies that carefully tune and
distribute the operation's micro-kernels among the big and LITTLE cores of the
target processor. The experimental results on a Samsung Exynos 5422, a
system-on-chip with ARM Cortex-A15 and Cortex-A7 clusters that implements the
big.LITTLE model, expose that our cache-aware versions of gemm with asymmetric
scheduling attain important gains in performance with respect to its
architecture-oblivious counterparts while exploiting all the resources of the
AMP to deliver considerable energy efficiency
Educational Activities to Help Transferring Knowledge in Nuclear: The Seminars of Spanish Young Generation in Nuclear (Jóvenes Nucleares)
From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help transferring the knowledge between those generations in the way that it can be possible
From Secondary School To University: Attracting Young Students Towards A Career In Nuclear
From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. To try to have success in that goal, some high school lectures were taught and it has been organized regularly a Basic Course on Nuclear Science and Technolog
Non-equilibrium System as a Demon
Maxwell demons are creatures that are imagined to be able to reduce the
entropy of a system without performing any work on it. Conventionally, such a
Maxwell demon's intricate action consists of measuring individual particles and
subsequently performing feedback. Here we show that much simpler setups can
still act as demons: we demonstrate that it is sufficient to exploit a
non-equilibrium distribution to seemingly break the second law of
thermodynamics. We propose both an electronic and an optical implementation of
this phenomenon, realizable with current technology.Comment: final version: 6 pages, 4 figures (minor typos corrected - very minor
title change to fit PRL style
Nonlocal quantum heat engines made of hybrid superconducting devices
We discuss a quantum thermal machine that generates power from a thermally driven double quantum dot coupled to normal and superconducting reservoirs. Energy exchange between the dots is mediated by electron-electron interactions. We can distinguish three main mechanisms within the device operation modes. In the Andreev tunneling regime, energy flows in the presence of coherent superposition of zero- and two-particle states. Despite the intrinsic electron-hole symmetry of Andreev processes, we find that the heat engine efficiency increases with increasing coupling to the superconducting reservoir. The second mechanism occurs in the regime of quasiparticle transport. Here we obtain large efficiencies due to the presence of the superconducting gap and the strong energy dependence of the electronic density of states around the gap edges. Finally, in the third regime there exists a competition between Andreev processes and quasiparticle tunneling. Altogether, our results emphasize the importance of both pair tunneling and structured band spectrum for an accurate characterization of the heat engine properties in normal-superconducting coupled dot system
- …