1,372 research outputs found

    Controlling conductance statistics of quantum wires by driving ac fields

    Get PDF
    We calculate the entire distribution of the conductance P(G) of a one-dimensional disordered system --quantum wire-- subject to a time-dependent field. Our calculations are based on Floquet theory and a scaling approach to localization. Effects of the applied ac field on the conductance statistics can be strong and in some cases dramatic, as in the high-frequency regime where the conductance distribution shows a sharp cut-off. In this frequency regime, the conductance is written as a product of a frequency-dependent term and a field independent term, the latter containing the information on the disorder in the wire. We thus use the solution of the Mel'nikov equation for time-independent transport to calculate P(G) at any degree of disorder. At lower frequencies, it is found that the conductance distribution and the correlations of the transmission Floquet modes are described by a solution of the Dorokhov-Mello-Pereyra-Kumar equation with an effective number of channels. In the regime of strong localization, induced by the disorder or the ac field, P(G) is a log-normal distribution. Our theoretical results are verified numerically using a single-band Anderson Hamiltonian.Comment: 6 pages, 4 figures. V2: a new reference added. Minor correction

    Chiral bound states in the continuum

    Get PDF
    We present a distinct mechanism for the formation of bound states in the continuum (BICs). In chiral quantum systems there appear zero-energy states in which the wave function has finite amplitude only in one of the subsystems defined by the chiral symmetry. When the system is coupled to leads with a continuum energy band, part of these states remain bound. We derive some algebraic rules for the number of these states depending on the dimensionality and rank of the total Hamiltonian. We examine the transport properties of such systems including the appearance of Fano resonances in some limiting cases. Finally, we discuss experimental setups based on microwave dielectric resonators and atoms in optical lattices where these predictions can be tested.Comment: 9 pages, 8 figures. v2: includes results specific to honeycomb lattice; matches published versio

    Commensurability effects for fermionic atoms trapped in 1D optical lattices

    Get PDF
    Fermionic atoms in two different hyperfine states confined in optical lattices show strong commensurability effects due to the interplay between the atomic density wave (ADW) ordering and the lattice potential. We show that spatially separated regions of commensurable and incommensurable phases can coexist. The commensurability between the harmonic trap and the lattice sites can be used to control the amplitude of the atomic density waves in the central region of the trap.Comment: Accepted for publication in Physical Review Letter

    Superradiance at the localization-delocalization crossover in chlorosomes

    Get PDF
    Conferencia invitada ; Nonequilibrium condensed matter and biological systems, Madrid, March 9-11, 2016 ; http://scala.uc3m.es/SFE16/Peer Reviewe

    Interacting electron systems between Fermi leads: effective one-body transmissions and correlation clouds

    Get PDF
    In order to extend the Landauer formulation of quantum transport to correlated fermions, we consider a spinless system in which charge carriers interact, connected to two reservoirs by non-interacting one-dimensional leads. We show that the mapping of the embedded many-body scatterer onto an effective one-body scatterer with interaction-dependent parameters requires to include parts of the attached leads where the interacting region induces power law correlations. Physically, this gives a dependence of the conductance of a mesoscopic scatterer upon the nature of the used leads which is due to electron interactions inside the scatterer. To show this, we consider two identical correlated systems connected by a non-interacting lead of length L_CL\_\mathrm{C}. We demonstrate that the effective one-body transmission of the ensemble deviates by an amount A/L_CA/L\_\mathrm{C} from the behavior obtained assuming an effective one-body description for each element and the combination law of scatterers in series. AA is maximum for the interaction strength UU around which the Luttinger liquid becomes a Mott insulator in the used model, and vanishes when U→0U \to 0 and U→∞U \to \infty. Analogies with the Kondo problem are pointed out.Comment: 5 pages, 6 figure

    Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator

    Get PDF
    We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.Comment: 21 pages (main text 11 pages), 11 figure

    Mesoscopic behavior of the transmission phase through confined correlated electronic systems

    Get PDF
    We investigate the effect of electronic correlations on the transmission phase of quantum coherent scatterers, considering quantum dots in the Coulomb blockade regime connected to two single-channel leads. We focus on transmission zeros and the associated \pi-phase lapses that have been observed in interferometric experiments. We numerically explore two types of models for quantum dots: (i) lattice models with up to eight sites, and (ii) resonant level models with up to six levels. We identify different regimes of parameters where the presence of electronic correlations is responsible for the increase or the decrease of the number of transmission zeros vs. electrochemical potential on the dot. However, we show that interaction effects cannot reproduce the universal behavior of alternating resonances and phase lapses, experimentally observed in many-electron Coulomb blockaded dots. Our numerical results strongly suggest that the main experimentally observed features are captured by the theory for chaotic ballistic dots of Molina et al., [Phys. Rev. Lett. 108, 076803 (2012)] incorporating one-particle wave-function correlations but ignoring many-particle electronic correlations.Comment: 17 pages, 14 figure

    Dynamics of coherence, localization and excitation transfer in disordered nanorings

    Full text link
    Self-assembled supramolecular aggregates are excellent candidates for the design of efficient excitation transport devices. Both artificially prepared and natural photosynthetic aggregates in plants and bacteria present an important degree of disorder that is supposed to hinder excitation transport. Besides, molecular excitations couple to nuclear motion affecting excitation transport in a variety of ways. We present an exhaustive study of exciton dynamics in disordered nanorings with long-range interactions under the influence of a phonon bath and take the LH2 system of purple bacteria as a model. Nuclear motion is explicitly taken into account by employing the Davydov ansatz description of the polaron and quantum dynamics are obtained using a time-dependent variational method. We reveal an optimal exciton-phonon coupling that suppresses disorder-induced localization and facilitate excitation de-trapping. This excitation transfer enhancement, mediated by environmental phonons, is attributed to energy relaxation toward extended, low-energy excitons provided by the precise LH2 geometry with anti-parallel dipoles and long-range interactions. An analysis of localization and spectral statistics is followed by dynamical measures of coherence and localization, transfer efficiency and superradiance. Linear absorption, 2D photon-echo spectra and diffusion measures of the exciton are examined to monitor the diffusive behavior as a function of the strengths of disorder and exciton-phonon coupling.Comment: 18 pages, 13 figure
    • …
    corecore