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Fermionic atoms in two different hyperfine states confined in optical lattices show strong commensu-
rability effects due to the interplay between the atomic density wave ordering and the lattice potential. We
show that spatially separated regions of commensurable and incommensurable phases can coexist. The
commensurability between the harmonic trap and the lattice sites can be used to control the amplitude of
the atomic density waves in the central region of the trap.
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Ultracold Bose or Fermi gases can be confined in arti-
ficial optical lattices created by standing-wave laser fields.
The low-energy properties of these systems can be de-
scribed using models borrowed from condensed matter
systems [1] whose parameters and dimensionality can be
controlled with high precision. This tunability has opened
new avenues for understanding the physics of strongly
correlated systems. Greiner et al. observed a superfluid to
Mott insulator transition in a 3D optical lattice with bo-
sonic 87Rb atoms [2]. Interesting experimental results have
also been obtained for fermions [3].

The physics of cold fermionic atoms in optical lattices is
predicted to be the one of the attractive Hubbard model
with the different hyperfine states playing the role of the
spin states. In the case of one dimension, bosonization
predicts the formation of a Luther-Emery liquid for attrac-
tive interactions [4]. The spin sector is gapped, inducing
exponential decay of spin correlations in contrast to singlet
superconducting and charge-density wave correlations that
have a power law decay [5]. Atoms are trapped in experi-
ments and the interplay between correlations, lattice, and
confinement has to be properly addressed. Moreover, the
study of the inhomogeneity can be very relevant for the
understanding of unconventional superconductors. For ex-
ample, the density of states of high-Tc superconductors
presents spatial inhomogeneities [6]. Confined fermions in
optical lattices are ideal experimental candidates to study
these issues.

Recently, Gao Xianlong et al. studied the unpolarized
attractive Hubbard model in a 1D optical lattice with
harmonic confinement. Using the density matrix renormal-
ization group (DMRG) approach, they observed the coex-
istence of spin pairing with an atomic density wave (ADW)
that could be interpreted as a signature of a Luther-Emery
liquid phase. This interpretation is further justified by the
fact that the momentum of the ADW is proportional to the
average atomic density in the bulk of the trap kADW � � �n.
These ADWs could be detected measuring the elastic light-
scattering diffraction pattern (the Fraunhofer structure fac-
tor), proportional to the Fourier transform of the atomic

density [7]. In a complementary work using quantum
Monte Carlo simulations, Pour et al. interpreted the diver-
gence of the form factors of the density-density and pairing
correlation function as defining a supersolid [8].

The purpose of this Letter is to uncover new commen-
surability effects induced by the combination of the
lattice and confinement potentials and the atomic density.
Since the precise momentum of the ADWs in the trap
can be controlled with the average density, it is possible
to observe effects similar to the commensurability-
incommensurability transition appearing in crystalline sur-
faces when the density oscillations have a different peri-
odicity than the underlying lattice [9]. These concepts have
also been applied to the doped Mott transition in strongly
correlated Fermi systems [5,10]. We will show that for
local densities close to half filling there appear commen-
surate and incommensurate phases in different parts of the
lattice. Similar local quantum criticality issues have been
seen before in the repulsive case [11,12]. In the commen-
surate phase that arises in sectors of the lattice where the
density is close to half filling, the amplitude of the ADWs
is enhanced due to local umklapp scattering terms. The
incommensurate phase close to half filling is characterized
by the appearance of a new length scale, similar to a
beating length, due to the interplay between the periodicity
of the lattice and the periodicity of the ADW that results in
nodes and amplitude modulation of the latter.

Similar to previous works, we consider the Hamiltonian
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where t is the hopping, � is a pseudospin-1=2 degree of
freedom, U is the interaction (always attractive U < 0),
and V is the strength of the confinement. The creation,
destruction, and number operators are the usual ones at
each site i of the lattice. The total length L of the system is
chosen such that the density is smooth, going to zero in the
edges. All energies are expressed in units of t (t � 1). The
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parameterDmeasures the displacement of the center of the
harmonic confinement potential with respect to the posi-
tion of a lattice site. It can vary from 0.0 (the center of the
harmonic well coincides with a lattice site) to 0.5 (the
center of the well is exactly between two lattice sites).
We will study only the unpolarized case.

We study the ground state properties of the Hamiltonian
(1) with the DMRG algorithm [13] that provides very
accurate numerical results. Because of the breaking of
the translational symmetry by the trapping potential some
modifications of the DMRG procedure are required. Here
we follow the same procedure used before for disorder
potentials [14] and umklapp scattering induced phase tran-
sitions [15]. In order to obtain enough accuracy for the
largest size systems we needed to keep a maximum of 1400
states in each iteration.

As a complementary tool we use the approximate
Hartree-Fock (HF) method. It will allow us to study system
sizes significantly beyond the limits of a DMRG calcula-
tion. The HF approximation describes with high quantita-
tive precision the ADWs for jUj< 1 as we have checked
for systems up to L � 250 by comparison with DMRG
results. For values of U between U � �1 and U � �2 the
HF description is qualitatively good for the ADWs but it
overestimates their amplitude. For jUj> 2 HF deviates
from the exact results due to strong pairing correlations
not included in the approximation.

Without the trapping potential bosonization predicts an
ADW with wave number kADW � 2kF [5]. Adding con-
finement, the wave number of the ADW is modulated by
the density profile in the trap, but it can still be written as a
function of an effective Fermi wave number keff

F [7]

 kADW � 2keff
F ; keff

F � � �n=2; (2)

where �n is the average density around the center of the trap.
For �n � 1:0 (half filling) kADW � � and we have an ADW
with a periodicity of two lattice sites.

Figure 1 shows DMRG results for the site density of a
system with L � 180, U � �1, V � 0:0005, D � 0:0 and
two values of the number of atoms N � N" � N#. N � 80
is represented by open squares andN � 90 by open circles.
We also show for comparison HF results for the same
system. The agreement between DMRG and HF is remark-
able for U � �1. As can be seen in the figure, the local
density is close to half filling in the center of the trap. As a
consequence, an ADW with a long range modulation of the
amplitudes develops. The effect is more pronounced in the
case with N � 90, displaying a nice commensurate ADW
with large amplitude. The density in the center of the trap is
below half filling for N � 80; however, the ADW can still
be seen.

The appearance of lobes and nodes in the ADW depends
on small deviations of kADW from the lattice momentum �.
These features are expected to be more pronounced for
larger lattices. Therefore, we resort to the HF approxima-
tion to treat lattice sizes that are not attainable with present

DMRG codes. In order to relate intermediate and large
lattice systems we use the scaling NV2 � constant while
N ! 1 and V ! 0 [16]. This scaling keeps constant the
density in the central region of the trap. In Fig. 2 we show
HF results for the density in the central region for systems
with L � 1000, V � 0:000 012, U � �1 and different
number of atoms, to illustrate the kind of ADWs appearing
in larger size systems as a function of the number of atoms.
Of particular interest is the case of N � 560 where we can
see the suppression of the ADW for a displacement D �
0:5 of the trap.

The distance between nodes � in the ADW is related to
the distance it takes for the system to realize it is not
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FIG. 1. DMRG and HF results for L � 180, V � 0:0005, D �
0:0, U � �1:0, and N � 80, 90. As the graph is symmetric, only
the left part is shown. The inset shows a zoom of the central
region for N � 90 comparing DMRG results with D � 0:0 and
D � 0:5.
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FIG. 2. HF local density as a function of the site index for a
system of L � 1000 sites and different values of N and D.
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commensurate with the underlying lattice. If the local
average density is close to half filling �n � 1� �, we
have from (2) kADW � ��1� ��. � can be from the dis-
tance between nodes for a wave cos���1� ��x� taken at
integer values of the variable x, leading to � � ��1.

Figure 3 shows HF and DMRG results of the distance
between nodes � versus the average local density in the
center of the trap. The continuous line represents the
formula � � ��1. Because of finite size effects, slight
deviations could be seen close to half filling. However,
the overall agreement is excellent.

The enhancement of the ADW amplitude close to half
filling can be explained in terms of the additional umklapp
interaction. In the bosonization language these effects are
treated by adding a term to the umklapp part of the
Hamiltonian [5]

 H� � g3

Z
dx cos�

���
8
p
��x� � �x�; (3)

where g3 is the coupling constant of the umklapp scattering
terms, proportional to U in our model, and ��x� is the
bosonized field. The additional lowering of the energy due
to the umklapp term is effective even for local densities not
precisely at half filling. This phenomenon is robust close to
half filling, giving rise to the enhancement of the amplitude
and range modulation of the ADW. The amplitude of the
ADW increases with the value of the attractive interaction
as shown in the inset of Fig. 3 for DMRG and HF calcu-
lations with L � 100 and V � 0:001 but changing the
number of particles for each value of the interaction to
keep local half filling in the trap center. The increase is
very abrupt for small values of jUj, saturating for jUj 	 10.

Another important source of commensurability comes
from the external trapping potential. Just at half filling a
phase difference in the ADW can have dramatic effects in
the observed amplitudes at the lattices sites. The central
part of the ADW for N � 90 is shown in the inset of Fig. 1,
comparing the results with D � 0:0 and D � 0:5. The
strong suppression of the ADW can be clearly seen. Even
though the properties of the Luther-Emery liquid are not
modified by the displacement of the external potential, the
actual position of the lattice sites determine the amplitudes
of the ADW. This property was not seen previously in the
literature [17], because the systems studied were too small
to notice the difference but can have big experimental
consequences for the observation of the ADWs. Figure 2
also shows these differences between D � 0:0 and D �
0:5 for a larger system.

To proceed further with the characterization of the dif-
ferent local phases and commensurability effects we will
make use of two local quantities, the local variance of
the density �i � hn2

i i � hnii
2 and the order parameter

OCADW�i� for a local commensurate (pinned) ADW defined
as:

 OCADW�i� � jhni �
1
2�ni�1 � ni�1�ij: (4)

While the local variance �i measures the fraction of spin-
paired particles in site i, the commensurate ADW order
parameter OCADW�i� measures the local amplitude of the
ADW between site i and its near neighbors.

In Fig. 4 we show DMRG results for L � 180, V �
0:0005, U � �4, N � 70, and N � 86. The amplitude of
the ADW is much higher than in the examples with U �
�1. The density in the case with N � 70 is very close to
half filling in the center and the amplitude of the ADW
very large there. The local umklapp scattering term effec-
tively increases the attraction between fermions close to
half filling. The other case has densities larger than n � 1:0
in the central region. Nodes in the density due to the
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FIG. 3. Distance between nodes (�) as a function of the
average value of the density in the center of the trap for HF
calculations with L � 1000, V � 0:000 012, and U � �1:0, and
DMRG results with L � 100, V � 0:001, and U � �4:0. Inset:
amplitude of the ADW AADW in the center of the trap for
different values of the interaction strength with the central
density at half filling, L � 100, and V � 0:001. DMRG results
(�), HF results for interaction strengths up to U � �1:5 (
).
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FIG. 4. DMRG results for L � 180, D � 0:0, V � 0:0005,
and U � �4. Top panel: 86, atoms. Bottom panel: N � 70.
The left panels show the density and the right panels show the
local order parameters explained in the text.
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incommensurate ADWs appear. The amplitude of the
ADWs is larger in the lobe with local density close to
half filling and so it is the distance between nodes there.
In the right panels we show the value of �i and OCADW�i�
for both examples. The results are close to a plateau in the
central region with a large �i � 0:8. A more careful ex-
amination reveals that the maximum of �i occurs in the
regions close to half filling, precisely where OCADW�i� has
a maximum.

Lobes and nodes in the ADWs can be observed through
elastic light-scattering diffraction experiments, by means
of the Fraunhofer structure factor [4]:

 S�q� �
1

N2

��������
X
j

exp��iqj�nj

��������
2
: (5)

Figure 5 shows the structure factor for L � 100, V �
0:001, and U � �4. We show three cases with N � 60
D � 0:0, N � 48 D � 0:0, and N � 48 D � 0:5. The
largest peak at q � � corresponds to the case N � 48
and D � 0:0, exactly at half filling. This is due to the large
amplitude commensurate ADW. For the same number of
particles and D � 0:5, the ADW disappears and S�q� is
suppressed in the region around q � �. Above half filling
(N � 60) a small peak shows up at q � �, while most of
the intensity concentrates at the peaks qmax � � �n and the
corresponding symmetric peak. In the inset we show the
value of S��� as a function of D to demonstrate that the
displacement of the trap is an observable effect.

In conclusion, we have shown that commensurate and
incommensurate phases can be seen in cold fermions
trapped in optical lattices with attractive interaction. The
two phases can appear spatially separated depending on the
density and confinement of the atoms in the lattice. The
amplitude of the ADW increases with the strength of the
interaction. The local density variance �i shows that the
commensurate phase is characterized by a maximum num-
ber of local spin-paired atoms. The structure factor studied

in different examples reveals that the commensurate phase
is characterized by a large peak exactly at k � �, while for
phase coexistence the intensity is distributed in several
peaks. The displacement of the trap in relation to the lattice
is also a very important parameter for the experiment.
Depending on it, the amplitude of the ADWs and the q �
� peak can be suppressed. The width of the peaks is
inversely proportional to the number of wells in the optical
lattice. This parameter is the main limitation for the ex-
perimental detection of this commensurability effects. To
resolve the two peaks appearing due to the incommensur-
ability of ADWs with densities �n � 1:0� � one needs
widths of the peaks smaller than �<��. According to
our numerical simulations, for harmonic confinement, the
intrinsic width of the peak scales with size as �int 	 10=L.
Taking into account that the width induced by the experi-
mental setup, �exp, will convolute with the intrinsic width,

we shall need a system size of L * 10=
�������������������������������
4�2=�2 � �2

exp

q
to

resolve the two peaks. Currently available one-
dimensional optical lattices of 100 sites should be enough
to detect the results represented in Fig. 5 if the experimen-
tal width is less than 0.24 in units of the density [3].
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