980 research outputs found

    Spiral Growth and Step Edge Barriers

    Get PDF
    The growth of spiral mounds containing a screw dislocation is compared to the growth of wedding cakes by two-dimensional nucleation. Using phase field simulations and homoepitaxial growth experiments on the Pt(111) surface we show that both structures attain the same characteristic large scale shape when a significant step edge barrier suppresses interlayer transport. The higher vertical growth rate observed for the spiral mounds on Pt(111) reflects the different incorporation mechanisms for atoms in the top region and can be formally represented by an enhanced apparent step edge barrier.Comment: 11 pages, 4 figures, partly in colo

    Rotation-activity relations and flares of M dwarfs with K2 long- and short-cadence data

    Get PDF
    Funding: UK STFC grant no. ST/R000824/1 (A.S.).Using light curves obtained by the K2 mission, we study the relation between stellar rotation and magnetic activity with special focus on stellar flares. Our sample comprises 56 bright and nearby M dwarfs observed by K2 during campaigns C0-C18 in long- and short-cadence mode. We derive rotation periods for 46 M dwarfs and measure photometric activity indicators such as amplitude of the rotational signal, standard deviation of the light curves, and the basic flare properties (flare rate, flare energy, flare duration, and flare amplitude). We found 1662 short-cadence flares, 363 of which have a long-cadence counterpart with flare energies of up to 5.6 × 1034 erg. The flare amplitude, duration, and frequency derived from the short-cadence light curves differ significantly from those derived from the long-cadence data. The analysis of the short-cadence light curves results in a flare rate that is 4.6 times higher than the long-cadence data. We confirm the abrupt change in activity level in the rotation-activity relation at a critical period of ~10 d when photometric activity diagnostics are used. This change is most drastic in the flare duration and frequency for short-cadence data. Our flare studies revealed that the highest flare rates are not found among the fastest rotators and that stars with the highest flare rates do not show the most energetic flares. We found that the superflare frequency (E ≥ 5 × 1034 erg) for the fast-rotating M stars is twice higher than for solar like stars in the same period range. By fitting the cumulative FFD, we derived a power-law index of α = 1.84 ± 0.14, consistent with previous M dwarf studies and the value found for the Sun.Publisher PDFPeer reviewe

    Transit observations at the observatory in Grossschwabhausen: XO-1b and TrES-1

    Get PDF
    We report on observations of transit events of the transiting planets XO-1b and TrES-1 with the AIU Jena telescope in Grossschwabhausen. Based on our IR photometry (in March 2007) and available transit timings (SuperWASP, XO and TLC-project-data) we improved the orbital period of XO-1b (P = 3.941497±\pm0.000006) and TrES-1 (P = 3.0300737±\pm0.000006), respectively. The new ephemeris for the both systems are presented.Comment: 4 pages, 2 figure

    Portraying the hosts: Stellar science from planet searches

    Full text link
    Information on the full session can be found on this website: https://sites.google.com/site/portrayingthehostscs18/We present a compendium of the splinter session on stellar science from planet searches that was organized as part of the Cool Stars 18 conference. Seven speakers discussed techniques to infer stellar information from radial velocity, transit and microlensing data, as well as new instrumentation and missions designed for planet searches that will provide useful for the study of the cool stars

    No variations in transit times for Qatar-1 b

    Full text link
    The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.Comment: Accepted for publication in A&

    Constraints on a second planet in the WASP-3 system

    Get PDF
    There have been previous hints that the transiting planet WASP-3 b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The radial-velocity data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period.Comment: Accepted for publication in The Astronomical Journa
    corecore