3,695 research outputs found

    The Shape of Covariantly Smeared Sources in Lattice QCD

    Full text link
    Covariantly smeared sources are commonly used in lattice QCD to enhance the projection onto the ground state. Here we investigate the dependence of their shape on the gauge field background and find that the presence of localized concentrations of magnetic field can lead to strong distortions which reduce the smearing radii achievable by iterative smearing prescriptions. In particular, as a→0a\to 0, iterative procedures like Jacobi smearing require increasingly large iteration counts in order to reach physically-sized smearing radii rsm∼r_{sm}\sim 0.5 fm, and the resulting sources are strongly distorted. To bypass this issue, we propose a covariant smearing procedure (``free-form smearing'') that allows us to create arbitrarily shaped sources, including in particular Gaussians of arbitrary radius.Comment: 1+15 pages, 7 figures (24 pdf images

    Nonlinear nanomechanical resonators for quantum optoelectromechanics

    Full text link
    We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.Comment: 15 pages, 6 figure

    Solubility and diffusion of oxygen in tantalum

    Get PDF
    Solubility of oxygen in tantalum determined by resistivity techniqu

    Failure of the Standard Coupled-Channels Method in Describing the Inelastic Reaction Data: On the Use of a New Shape for the Coupling Potential

    Get PDF
    We present the failure of the standard coupled-channels method in explaining the inelastic scattering together with other observables such as elastic scattering, excitation function and fusion data. We use both microscopic double-folding and phenomenological deep potentials with shallow imaginary components. We argue that the solution of the problems for the inelastic scattering data is not related to the central nuclear potential, but to the coupling potential between excited states. We present that these problems can be addressed in a systematic way by using a different shape for the coupling potential instead of the usual one based on Taylor expansion.Comment: 10 pages, 4 figures, 1 table, Latex:RevTex4 published in J. Phys. G: Nucl. Part. Phy

    Similarity of nuclear structure in 132Sn and 208Pb regions: proton-neutron multiplets

    Full text link
    Starting from the striking similarity of proton-neutron multiplets in 134Sb and 210Bi, we perform a shell-model study of nuclei with two additional protons or neutrons to find out to what extent this analogy persists. We employ effective interactions derived from the CD-Bonn nucleon-nucleon potential renormalized by use of the V-low-k approach. The calculated results for 136Sb, 212Bi, 136I, and 212At are in very good agreement with the available experimental data. The similarity between 132Sn and 208Pb regions is discussed in connection with the effective interaction, emphasizing the role of core polarization effects.Comment: 4 pages, 3 figures, 2 table

    Laser cooling of a nanomechanical resonator mode to its quantum ground state

    Full text link
    We show that it is possible to cool a nanomechanical resonator mode to its ground state. The proposed technique is based on resonant laser excitation of a phonon sideband of an embedded quantum dot. The strength of the sideband coupling is determined directly by the difference between the electron-phonon couplings of the initial and final states of the quantum dot optical transition. Possible applications of the technique we describe include generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex
    • …
    corecore