2,645 research outputs found

    A Study of Meteoroid Impact Phenomena

    Get PDF
    Process of crater formation resulting from impact of hypervelocity projectile - meteoroid impac

    On the transonic aerodynamics of a compressor blade row

    Get PDF
    Linearized analyses have been carried out for the induced velocity and pressure fields within a compressor blade row operating in an infinite annulus at transonic Mach numbers of the flow relative to the blades. In addition, the relationship between the induced velocity and the shape of the mean blade surface has been determined. A computational scheme has been developed for evaluating the blade mean surface ordinates and surface pressure distributions. The separation of the effects of a specified blade thickness distribution from the effects of a specified distribution of the blade lift has been established. In this way, blade mean surface shapes that are necessary for the blades to be locally nonlifting have been computed and are presented for two examples of blades with biconvex parabolic arc sections of radially tapering thickness. Blade shapes that are required to achieve a zero thickness, uniform chordwise loading, constant work spanwise loading are also presented for two examples. In addition, corresponding surface pressure distributions are given. The flow relative to the blade tips has a high subsonic Mach number in the examples that have been computed. The results suggest that at near-sonic relative tip speeds the effective blade shape is dominated by the thickness distribution, with the lift distribution playing only a minor role

    Comments on the solution of the spall-fracture problem in the approximation of linear elasticity

    Get PDF
    Spall fracture problem solution in linear elasticity approximatio

    The role of copper in disulfiram-induced toxicity and radiosensitisation of cancer cells.

    Get PDF
    Abstract Disulfiram has been used for several decades in the treatment of alcoholism. It now shows promise as an anti-cancer drug and radiosensitizer. Proposed mechanisms of action include the induction of oxidative stress and inhibition of proteasome activity. Our purpose was to determine the potential of disulfiram to enhance the anti-tumor efficacy of external beam -irradiation and 131I-metaiodobenzylguanidine (131I-MIBG), a radiopharmaceutical used for the therapy of neuroendocrine tumors. Methods: The role of copper in disulfiram-induced toxicity was investigated by clonogenic assay after treatment of human SK-N-BE(2c) neuroblastoma and UVW/NAT glioma cells. Synergistic interaction between disulfiram and radiotherapy was evaluated by combination index analysis. Tumor growth delay was determined in vitro using multicellular tumor spheroids and in vivo using human tumor xenografts in athymic mice. Results: Escalating disulfiram dosage caused a biphasic reduction in the surviving fraction of clonogens. Clonogenic cell kill after treatment with disulfiram concentrations less than 4 M was copper-dependent, whereas cytotoxicity at concentrations greater than 10 M was caused by oxidative stress. The cytotoxic effect of disulfiram was maximal when administered with equimolar copper. Likewise, disulfiram’s radiosensitization of tumor cells was copper-dependent. Furthermore, disulfiram treatment enhanced the toxicity of 131I-MIBG to spheroids and xenografts expressing the noradrenaline transporter. Conclusions: The results demonstrate that (i) the cytotoxicity of disulfiram was copper-dependent; (ii) molar excess of disulfiram relative to copper resulted in attenuation of disulfiram-mediated cytotoxicity; (iii) copper was required for the radiosensitizing activity of disulfiram and (iv) copper-complexed disulfiram enhanced the efficacy not only of external beam radiation but also of targeted radionuclide therapy in the form of 131I-MIBG. Therefore disulfiram may have anti-cancer potential in combination with radiotherapy

    Theory of ground state cooling of a mechanical oscillator using dynamical back-action

    Full text link
    A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical back-action is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the cavity linewidth. It is shown that the final average occupancy can be retrieved directly from the optical output spectrum.Comment: 5 pages, 2 figure

    First Order Premelting Transition of Vortex Lattices

    Full text link
    Vortex lattices in the high temperature superconductors undergo a first order phase transition which has thus far been regarded as melting from a solid to a liquid. We point out an alternative possibility of a two step process in which there is a first order transition from an ordinary vortex lattice to a soft vortex solid followed by another first order melting transition from the soft vortex solid to a vortex liquid. We focus on the first step. This premelting transition is induced by vacancy and interstitial vortex lines. We obtain good agreement with the experimental transition temperature versus field, latent heat, and magnetization jumps for YBCO and BSCCO.Comment: revised version replaces 9705092, 5 pages, Latex, 2 postscript figures, defect line wandering is included, 2 step melting is propose

    Statistics of Solar Wind Electron Breakpoint Energies Using Machine Learning Techniques

    Get PDF
    Solar wind electron velocity distributions at 1 au consist of a thermal "core" population and two suprathermal populations: "halo" and "strahl". The core and halo are quasi-isotropic, whereas the strahl typically travels radially outwards along the parallel and/or anti-parallel direction with respect to the interplanetary magnetic field. With Cluster-PEACE data, we analyse energy and pitch angle distributions and use machine learning techniques to provide robust classifications of these solar wind populations. Initially, we use unsupervised algorithms to classify halo and strahl differential energy flux distributions to allow us to calculate relative number densities, which are of the same order as previous results. Subsequently, we apply unsupervised algorithms to phase space density distributions over ten years to study the variation of halo and strahl breakpoint energies with solar wind parameters. In our statistical study, we find both halo and strahl suprathermal breakpoint energies display a significant increase with core temperature, with the halo exhibiting a more positive correlation than the strahl. We conclude low energy strahl electrons are scattering into the core at perpendicular pitch angles. This increases the number of Coulomb collisions and extends the perpendicular core population to higher energies, resulting in a larger difference between halo and strahl breakpoint energies at higher core temperatures. Statistically, the locations of both suprathermal breakpoint energies decrease with increasing solar wind speed. In the case of halo breakpoint energy, we observe two distinct profiles above and below 500 km/s. We relate this to the difference in origin of fast and slow solar wind.Comment: Published in Astronomy & Astrophysics, 11 pages, 10 figure
    corecore