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SUMMARY

Linearized analyses have been carried out for the induced velocity and

pressure fields within a blade row operating in an infinite annulus at transonic

Mach numbers of the flow relative to the blades. In addition, the relationship

between the induced velocity and the shape of the mean blade surface has been

determined. A computational scheme has been developed for evaluating the

blade mean surface ordinates and surface pressure distributions. The separa-

tion of the effects of a specified blade thickness distribution from the effects

of a specified distribution of the blade lift has been established. In this way,

blade mean surface shapes that are necessary for the blades to be locally

nonlifting have been computed and are presented for two examples of blades

with biconvex parabolic arc sections of radially tapering thickness. Blade

shapes that are required to achieve a zero thickness, uniform chordwise

loading, constant work spanwise loading are also presented for two examples.

In addition, corresponding surface pressure distributions are given. The

flow relative to the blade tips has a high subsonic Mach number in the examples

that have been computed. The results suggest that at near-sonic relative tip

speeds the effective blade shape is dominated by the thickness distribution,

with the lift distribution playing only a minor role.
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Subscripts:
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I. INTRODUCTION

The transonic flow through an axial compressor exhibits many extremely

complicated phenomena. No single analysis can account adequately for three-

dimensional effects, the presence of shock waves and end-wall boundary layers,

interference among blade rows, finite duct effects and other features of the

flow. In the present report attention is focused on the three-dimensional

effects in the flow field of a single blade row rotating in an infinite duct.

Examination of the three-dimensional effects provides an understanding of

some important aspects of the flow over the blades for both compressor per-

formance and noise generation.

A linearized theory for this flow has been developed by McCune (Refs

1 and 2) with more recent extensions by Okurounmu and McCune (Refs 3 and

4). Their basic solutions for the flow through such a blade row are appropriate

not only for computing the flow field in the immediate vicinity of the blades

but also for computing the flow field far up- and downstream of the blade row.

The acoustic far field of the rotating blade row has been examined within

the context of this theory at Cornell Aeronautical Laboratory, Inc. in a related

study and has been reported in Refs 5 and 6. The importance of that research

effort is that the acoustic field can be related directly to the geometry of the

blades and the aerodynamics of the flow through the blade row. Many previous

workers (see Refs 7 to 10, for example) have examined the acoustic field in

such an infinite duct, but with the approximation that the blade forces were

assumed to be known.

In the present investigation, the flow field characteristics within the

blade row, and in particular at the blades themselves, have been examined.

In Refs 5 and 6, the noise generation has been separated, in the linearized

sense, into noise due to blade thickness and noise due to blade lift. The blade

thickness distribution is assumed to be known in the thickness case and the

pressure difference across the blade surface is assumed to be known in the

lifting case. These are sufficient to compute the acoustic far field. In this



study, then, the relationship between the blade geometry and the specified

blade thickness and pressure differences is completed by determining the

ordinates of the mean blade surfaces and the portion of the pressure distribu-

tions which are symmetrical above and below the mean surfaces.

The separation of the flow field into thickness and lifting parts is dis-

cussed in Section II. The concept of a mean blade surface shape that is induced

solely by blade thickness through three-dimensional interactions is of special

importance and is covered in that section. In Section III, the flow field within

the blade row is examined for thickness alone, with numerical results pre-

sented in two cases for the blade mean surface shapes and the blade surface

pressures. The flow field within the blade row and similar numerical results

are examined for lifting blades in Section IV. Finally, concluding remarks

are given in Section V.



II. SEPARATION OF THICKNESS AND LIFTING CASES

The complete independence of the wing thickness and lifting effects in

the linearized representation of a two- or three-dimensional planar wing is

well established, see Refs 11 and 12, for example. The wing may be consid-

ered to have a mean surface shape, above and below which the thickness is

distributed symmetrically. The thickness is represented mathematically by

a surface distribution of sources along a planar surface approximating the

wing, while the pressure difference across the wing is represented by a sur-

face distribution of either doublets or, as used here, vortices along the same

planar surface.

A planar source distribution has the property that each elemental source

induces a discontinuity in normal velocity across the surface locally, but does

not induce a normal velocity component anywhere else along the surface. In

addition, each elemental source induces a tangential velocity component every-

where along the surface. This tangential velocity component is continuous

across the planar surface and is directly proportional to the surface pressure.

If the thickness distribution is specified, then, the boundary condition that the

wing upper and lower surfaces be streamlines leads directly to a relationship

between the chordwise derivative of the thickness distribution and the source

strength. The tangential velocity, and so the surface pressure, can then be

found directly by integration over the source distribution. If, on the other

hand, the tangential velocity or pressure is specified, a singular integral

equation must be solved to determine the source strength. When the solution

for the source strength has been found, the resulting thickness distribution

follows directly from the streamline boundary condition by integration.

A planar vortex distribution has the property that each elemental vortex

induces a discontinuity in the tangential velocity, and so in the surface pres-

sure, across the surface locally, but does not induce a tangential velocity

component anywhere else along the surface. In addition, each elemental

vortex induces a normal velocity component everywhere along the surface.

This normal component is continuous across the planar surface. If the



distribution of the tangential velocity difference, or equivalently the pressure

difference, across the surface is specified, then, the vortex distribution can

be determined directly in terms of the local tangential velocity difference.

The boundary condition that the wing mean surface be a streamline leads

directly to the chordwise derivative of the mean surface shape by an integra-

tion over the vortex distribution. The mean surface ordinates are found by

integration. If, on the other hand, the mean surface ordinates, and so the

chordwise derivatives, are specified, the streamline boundary condition

becomes a singular integral equation for the vortex distribution. When the

solution for the vortex distribution has been found, the tangential velocity

difference, pressure difference and the lift follow directly.

Once the wing is no longer planar, for example if dihedral or twist of

the wing is present or if a lifting system composed of several wings is con-

sidered, the separation of thickness and lift is not so straightforward. The

elemental sources, although still inducing only a normal velocity jump locally,

do induce a normal velocity component along the mean surface at points that

do not lie in the same plane. This normal velocity is continuous across the

mean surface. In a similar way, the elemental vortices, although still induc-

ing only a tangential velocity jump locally, do induce a tangential velocity

component along the mean surface at points that do not lie in the same plane.

This tangential velocity is also continuous across the mean surface. These

additional normal and tangential induced velocity components lead generally

to a coupling between the thickness and lifting effects that is not present for a

planar wing.

The acoustic intensity has been determined separately for blade thickness

and blade lift in Refs 5 and 6. In this way each effect may be assessed sepa-

rately. In the nonlifting case when thickness alone is treated, it is important

to realize that the blades are assumed to be nonlifting locally, i. e. , the

pressure difference across the blades is everywhere zero. It is not sufficient

to consider only the total integrated lift to be zero. The so-called design

problem has been considered in Refs 5 and 6, i. e. , it is assumed that in the

thickness case the thickness distribution is known while in the lifting case the

pressure difference across the blade surface is known. In this way, it is not



necessary to solve any integral equations, as discussed above. It may be

noted that specification of the distributions of thickness and pressure differ-

ence are the standard procedure used in marine propeller design, see Ref 13,

for example.

When thickness alone is considered for the three-dimensional geometry

in which there are many interfering, highly twisted blades, it must be recog-

nized that the source distributions on the blades give rise to a normal velocity

component that is continuous across the mean blade surfaces. In order for

the pressure difference across the blades to be zero everywhere, i. e., to be

locally nonlifting, the mean blade surfaces must be shaped so that they are

streamlines with respect to this induced normal velocity. That is, the inher-

ent coupling between thickness and lift must be broken by shaping the mean

blade surfaces so that the blades carry no lift anywhere on their surfaces.

This procedure has been used in marine propeller design by Kerwin and

Leopold (Refs 13 and 14) to determine a blade incidence correction due to

thickness.

When lifting alone is considered for infinitely thin blades, it must be

recognized that the vortex distributions on the blades give rise to a tangential

velocity component that is continuous across the blade surfaces as well as a

normal component. The normal component again leads to the shaping of the

mean blade surfaces so that they are streamlines of the flow. However, the

mean surface shapes in the lifting case are those necessary to provide the

specified pressure difference across the blades. The tangential component

due to lift leads to a pressure distribution on the blade surfaces that is sym-

metrical above and below the mean blade surface.

Only the design problem is considered in this report. However, the

design problem can be extremely useful from both the acoustic and performance

points of view since it can yield the mean blade surface shapes that are neces-

sary to achieve desirable acoustical or performance properties. Moreover,

successful treatment of the design problem is a requisite first step towards

treatment of the problem in which the thickness and mean blade surface shapes

are completely specified and the acoustic and performance characteristics

must be determined. The coupling between thickness and loading is much

more complex in this case because an integral equation must be solved.



III. FLOW FIELD WITHIN BLADE ROW DUE TO BLADE THICKNESS

1. SUMMARY OF BASIC ANALYSIS

McCune's analysis (Ref 1) treats a rotating blade row in an infinite

annulus. In fluid fixed coordinates, the blade row advances with axial velocity

U and rotates with angular velocity CO (see Fig. 1). If the blades are suf-

ficiently thin so that only small disturbances are generated, the disturbance

velocity potential satisfies the wave equation in fluid fixed coordinates. In a

cylindrical system ( A , B , % ) fixed to the blades, the flow becomes steady

and the governing equation for velocity potential 6j becomes

'

where M

and Q^gg is the undisturbed sound speed. The elementary solution to the

above equation is

where the plus sign holds for i<0 and the minus sign for 2 > 0 , and

»* = 7~A« ^ (^J -MT (3)

where Ar is the blade tip radius.

The elementary solution given in Eq (2) involves the circumferential

eigenfunction e and the radial eigenfunction Rn . For the case of 8

radially oriented line sources rotating in an infinite annulus, n = vn B where vn



is the circumferential mode number and Rms is a normalized combination of

the Bessel functions of the first and second kind of order m B , namely

\ - 1 F- j ~ -^

The factor NmB . is a normalization factor; ^mS* *s *^e kth root of the

equation

' (6)

which results from the boundary condition that the radial velocity vanish at

the inner and outer annulus radii; ~n. is the ratio of the hub radius to the tip

radius; and 7^ 04 is a phase factor given by

O
(7)

From Eq (3) it can be seen that ^-ynB-k changes from a real quantity to

an imaginary one when the quantity MT = UJ/ir/AM becomes greater than

/^ ^ wsft / w ^ • This is the cutoff phenomenon discussed by Tyler and

Sofrin (Ref 7) for duct acoustic modes. When Aw8^ is real, the m , -k

mode is damped rapidly with distance away from the blade row. When A^s-fe

is imaginary, the mode propagates undamped along the duct as a so-called

"spinning acoustic wave." For U = 0, i. e. , no through flow, the cutoff

condition reduces to MT = ^W8*/m^ » as obtained in Ref 7. For m - 0,

A0£ = K0fc//3^T , which is always real, and hence this mode always decays.

In the limit mB—«•<*> for fixed ~k , the radial eigenvalues become

^w8*/mB ~ l + O t w - B ) ' . If the first term of this limit is used, the

cutoff condition is that the relative Mach number at the blade tips,

MK = CM2 + M* ) Z, be supersonic.

McCune (Ref 1) distributed sources over the helical surfaces which

represent the blades and expanded these source distributions in a Fourier-

Bessel series of the elementary solutions. In this way, he obtained the follow-

ing solution for the velocity potential, real part implied,



x svfy

where ^ is the axial projection of distance along the blade surface at a given

radius and Cjiy) is the projection of the blade chord C(^) on the % axis. The

plus sign and the superscript UL refer to the region upstream of the point

along the leading edge that lies farthest upstream, i. e. Z = 0; the minus sign

and aL refer to the region downstream of the point along the trailing edge that

lies farthest downstream, i. e. 2 - [C^f^)] ; and the superscript J(, refers to
m»>

those points within the blade row itself, i. e. 0 < 2. < £<»/P) . The quantitiesu J ma*

» which are the coefficients in the expansion of the source strength,

» are given by

TL

From this solution for the velocity potential, the perturbation pressure

and velocities anywhere in the flow field can be calculated. In blade fixed

coordinates the pressure and velocity perturbations are given by

A if"

where 9,,, is the undisturbed density. It is more convenient for consideration



of the flow within the blade row to use a coordinate system aligned with the

undisturbed helical flow incident to the blades. A typical blade section at

some radius /i is shown in Fig. 2. The coordinate S lies along the helix

of advance, i. e. it is aligned with the local incident velocity Ua which is the

resultant of the axial free stream velocity U and the local rotational com-

ponent uJA- . The coordinate n is normal to both A. and S in a right-handed

coordinate system (A , n , S ) and is directly proportional, at a given radius,

to the helical coordinate Zj = 0-Z that often occurs in the theory of rotating

machinery. The velocity components in Eqs (11) can be resolved into com-

ponents U-s and U-n , say, in the S and n directions, respectively, namely

or

where, from Fig. 2

U = U 1/f + O2' (15)
O N

The perturbation pressure, Jp , from Eqs (11) then reduces simply to

(16)

or, in coefficient form,

C = 1° - .2 ' * ? " • > (17)
" " "' <J~'o

The ordinates of the mean blade surface that is required for the blades

to be locally nonlifting, ^?(S) in Fig. 2, may be found from the boundary

condition that the mean surface be a streamline. In the linearized approximation



this boundary condition yields the differential equation

dS U0

Eq (18) is integrated with the condition that ^Cg") 3 0 in order to compare

blade ordinates.

The expressions for the velocity potential given in Eqs (8) and (9) are

greatly simplified by assuming that the blade profiles are similar at each

radial station and that the projection of the chord on the axis is a constant,

£A . For radially similar profiles, the source strength Ff^ . jp /Q is

F ( 9 , f ) = t (9) j , (£) (19)

where 6 (£) is the thickness ratio at each radius and Q^fy describes the

blade shape. Assuming t(£) in the form t(£) = t0f(Q) where X0 is the thick-

ness ratio at the hub and f(£) is a function which is unity at the hub and

describes the radial variation of the thickness ratio, then

<?.8*(f) - r. (20)

where

In the case of biconvex parabolic arc sections, the integration of each

term in the expression for the velocity potential may be done in closed form.

For parabolic arcs

(22)

This form has been used for fl,(^p throughout the present work. However,

the £* integration can be done for any polynomial variation of Q (%) .

The streamwise, CLS , and normal, u.n , components of the induced

velocity anywhere within the blade row can be found for the biconvex parabolic

arc thickness distribution by evaluating Eqs (12) and (14) by means of Eqs (9),

(20), (21) and (22). In general form this gives

10



2 D oo OOo y ^, _ r -,,0 s • i (23)
TT ft a . - , L ""* W-ft

28 oo co yy,8(H-p2J f C

Z Z —rr-^- Tm*C9) N^cz)71 ' £.,*-. 9 •-*-'[••-*- -- (24)

where

Qxr.6»^xK.6(Km B-fe g/9r)
= - — I - > m * 0 (25)

The quantities •̂ S"̂  . -^yyi-fc > ^m-ft an<^ ^ mft are functions of 2 only, but

have different forms depending upon the magnitude of the relative tip Mach

number. For subsonic relative tip Mach numbers, all Aw8£ in Eq (3) are

real, while for supersonic relative tip Mach numbers, some or all of the
^v C

^rnB-k W^^ ^e irnaginary an^ so lead to different forms for O^^ , etc. because

the real part of Eq (9) must be taken to obtain Eqs (23) and (24). In the pres-

ent report attention is concentrated on subsonic relative tip speeds and the

appropriate values of ^y^,^ . etc. are given in Table I.

Evaluation of the blade mean surface pressure distribution and ordinates

requires expressions for M-s
 ai*d u-n on the linearized location of the mean

surface, namely n- 0 , or in terms of 9 and Z , for 2f - O -Z - j| ,

•4 =0, 1, . . . , ( B- 1 ). Equation (23) for U.s may be evaluated easily in this
C •

limit since the summation over -S Yn^ (Z) sin ^83? vanishes and U-s is con-

tinuous across the mean blade surface. The result is

U.s(A,n = 0,s) 28 » . c

tU L

The normal component U*n , however, has a discontinuity across the mean

11



blade surface that is related directly to the source strength. Through an

analysis of the first term in N yy,^ in Table I it can be shown that summation
f 2 '̂ TT

of the series will lead to the discontinuity when approaching C, - —g— from

above and below the mean surface, with a value of zero at the surface. There-

fore the continuous part of u*n at the mean blade surface, which is the part

required in Eq (18), is given by

n - 0,s) r q s ( A , n = 0,5)1

U0r0 * L U0x0 J (27)

2B S 2 w80+P 2 ; _z
*»

2. METHOD OF COMPUTATION

The principal task in evaluating u.s and un on the mean blade surface

from Eqs (26) and (27) is the computation of T,^ . The £m£ and N m^ terms

in Table I are complicated algebraically, but can be computed easily.

Computation of Tw^ involves evaluation of Kmg-fc and Qyn8-fc • I

present application to fans and compressors, these computations require

repeated calculations of the Bessel functions of the first and second kinds of

large order. In performing the calculations, the asymptotic expansions

derived by Olver (Ref 15) for the Bessel functions of large order, which are

uniformly valid for all arguments, have been used and greatly facilitate the

computations. The methods developed to apply Olver 's expansions to the

evaluation of K^g^ and Q, m6^ are described in Appendix B of Ref 5. Fortu-

nately Kmg£ and £> QWB-fc are functions only of the blade number 8 , the

ratio of hub radius to the tip radius n. , and the radial distribution of thick-

ness f (o) , see Eqs (5) to (7) and (21). Thus Kmgfc and 9 Qme-fe maY ^>e

computed once and for all with fixed B , ~h and f (9) . A computer program

has been written to perform these operations.

A separate computer program has been written to evaluate U-5/ U0T?0 ,

ccn/L/0f0 and C-fo/to • This program requires as input the values of

Kmg$ and 9rQw8-fe found from the first program as well as the compressor

operating conditions. For the cases run to date and reported here, Eq (18)

12



was integrated by hand, but an integration subroutine developed subsequently

for the lifting case can be used.

McCune did not compute U.rt in Refs 1 and 2, but he did evaluate the

pressure coefficient C^,/X0 . This evaluation was carried out in an entirely

different way from that described above, namely he computed the velocity

potential along the mean blade surface and differentiated it numerically. The

analysis of Refs 1 and 2 was completed prior to the development of Olver's

expansions (Ref 15), so alternate methods were derived to evaluate K yy,s£ and

It proved to be more convenient in the actual calculation procedure to

sum Eqs (26) and (27) over iY\ first and then over -R . The convergence

properties of the double sums could be monitored more easily this way. Con-

vergence of the double sums is excellent over most of the blade, but becomes

less rapid as the leading and trailing edges are approached. Also, U,s con-

verged slightly faster than u^.. A slow convergence rate near the leading

and trailing edges is not unexpected because it is known that, in the linear

approximation, a biconvex parabolic arc airfoil section has logarithmic sin-

gularities in ULS at the edges. Nevertheless, except very close to the edges,

excellent convergence has been obtained in the cases considered with the

double sums truncated at a maximum ~k. of 7 and a maximum in of 15 to 20.

3. COMPUTED RESULTS

Calculations have been carried out for two sample cases. The geometrical

and operating parameters chosen were a blade number, 6 , of 64; a hub radius

to tip radius ratio, ~n , of 0. 9; a solidity, Cg^/Lr , of 0. 5; an axial Mach

number, M , of 0. 6; and two values of the ratio of tip speed to undisturbed

sound speed, MT , namely 0. 529 and 0. 775 which give resultant relative tip

Mach numbers, MR , of 0. 80 and 0. 98, respectively. The solidity used here

is defined as the projection of the chord on the axial direction, C^ , divided

by the spacing between the blade tips, Lr , where LT - 2.TIKT/B. Also, the

same thickness ratio variation used by McCune,

(28)

13



was assumed. This T(^) varies nearly linearly with radius from a value T0

at the hub to tip values of 0. 844 X0 for MR = 0. 80 and 0. 860 T0 for MH = 0. 98.

Chordwise distributions of normalized pressure coefficient, C+,/T0 ,

are presented in Fig. 3 for MR = 0. 98 at three radial stations. The pressure

is symmetrical about midchord for the symmetrical thickness. The corre-

sponding computations from Ref 2 are presented for comparison, along with

the strip (cascade) theory distribution at the blade tip, also from Ref 2. The

differences between the present results and those of Ref 2 have not been

resolved. Differences also exist for MR = 0. 80, but in that case the present

results lie slightly above McCune's. As a check on the procedure used here,

(JLS was computed alternately by numerically differentiating the potential in

the same way as in Ref 2. The results were identical to those computed

directly from Eq (26). It is suspected, therefore, that the discrepancies

arise from the different procedures used for computing ^mgfc anc^ ^ f^e-k •

Chordwise distributions of the mean blade surface ordinates fy[ , non-

dimensionalized by c^0 , where C is the local chord which varies with the

radius for a constant C^ , are presented at three radial stations in Fig. 4 for

MR = 0. 80 and in Fig. 5 for MR = 0. 98. The blade mean surface shapes

consist of a negative incidence angle plus a camber distribution which is

antisymmetric about midchord for the symmetrical thickness distribution

considered here. Comparison of the two cases indicates that as MR increases

toward unity the incidence angle becomes slightly more negative and the amount

of camber becomes slightly more positive.

There is very little difference from one radius to the next especially for

the example in Fig. 4 where the blade ordinates are virtually indistinguishable

from one another. This indicates that three-dimensional effects may not be of

great importance for these cases. It would be instructive to make a strip

(cascade) calculation of the mean blade surface ordinates to establish the

three-dimensional effects, but this has not been carried out. When MR increases

to supersonic values, however, it is expected that three-dimensional effects

will be significant, just as they are in the pressure distributions, as McCune

demonstrated in Ref 2.
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IV. FLOW FIELD WITHIN BLADE ROW DUE TO BLADE LIFT

1. SUMMARY OF BASIC ANALYSIS

Recently, Okurounmu and McCune (Refs 3 and 4) have extended McCune's

earlier analysis to describe the linearized, three-dimensional flow through a

lifting blade row. Their analysis for the lifting case is partly based on the

earlier work of Reissner (Ref 16) and Davidson (Ref 17). Reissner examined

the linearized, incompressible flow through a propeller in free air. His basic

approach was to solve for the velocity potential in the far wake, using a source

distribution to obtain the required discontinuity at the trailing helical vortex

sheets far behind the blades. The blades were represented by vortex lines

having bound circulation r*(o) . Reissner found a source distribution which

would produce the required discontinuity, /""(£) , in the velocity potential at

the blade wakes. He then had to add another source distribution to cancel the

unwanted effects of the first, off the wakes. This enabled him to compute the

induced velocities due to the vortex lines and their associated wakes of trailing

vorticity. Davidson extended Reissner's solution to the case of a propeller

in a wind tunnel including compressibility effects. It should be mentioned that

Reissner's results have been obtained by other investigators using different

procedures, for example, see Lerbs1 derivation in Appendix 1 of Ref 18.

The governing equation for the linearized flow through a lifting blade

row in an infinite annulus is Eq (1), which in the far wake reduces to

= 0 (29)

where % = B~l as before. This is the same equation for the wake potential

that Reissner solved. Accounting for the presence of the hub and the shroud,

where the radial velocity must vanish, Okurounmu and McCune obtain the

following result for the wake potential

B (o ; s in (mo* . j i-v . . t o ) s in ( m o f c ) \ ^
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where 6 is again the number of blades, ^« = 2? g — ,>t = 0, 1 , . . . , ( B - 1 ),

and varies linearly from - -J- to + -=- between adjacent blades. The blades
gjjr , B o

are located at £ = ^ , -^ = 0, 1, . . . . (8-1), and
a o

7

I (9,) K (pj I (9) - I (pr) I (9,,) K(p)

V9rt

(31)

where l(ol and K(p) are abbreviated notations for

Ky^g ( KVI 8 o ) , the modified Bessel functions of the first and second kind

and order Yn Q , and

The solution for the complete potential downstream of the rotor was

obtained by adding particular solutions in the form of Eq (2) and the additional

particular solution HE to the wake solution where

(33)
r =

The particular solution is needed because 0}^ plus a general function of Z

satisfies Eq (1). Upstream only the particular solutions in the form of Eq (2)

are needed. Matching the potential and the mass flow at the rotor plane,

Okurounmu and McCune obtain the following solution for the velocity potential

due to 8 vortex lines rotating in an infinite annulus, real part implied,

16



«"

-TT) (34)

I.,

where f(£) is the bound circulation and the quantities PO» , ^^ , and H

are coefficients in the expansions

<3 5 a>

(35c)

The inclusion of / in the solution is seen to be required because the

KO (• ^o* ~p~ / do not form a complete set.

This solution was used by Okurounmu and McCune in Ref 3 to compute

the induced drag for a rotor at high subsonic tip speeds. However, these

results cannot be used at supersonic tip speeds because, as they point out,

a vortex line has infinite wave drag in supersonic flow. Later, in Ref 4,

Okurounmu and McCune extend the above result to cover a lifting surface

17



model for the rotor blades. With this model, a finite wave drag can be

obtained.

In deriving the lifting surface result, the solution for single vortex lines

is used as the potential due to an elementary strip of blade surface. Then,

by distributing elementary strips of bound circulation over a helical blade

surface and integrating across the chord, the lifting surface result is obtained.

For the special case where the vortex strength, ^ ( q , % ), can be factored,

i. e.

' ? <36>

where
fi^a.

(37)

<3 8>
and C^. is the constant projection of the chord on the axis, the quantities Pa

^ntli • an<^ ^w-ft have the same meaning as in the concentrated bound vortex

solution. For this case, the lifting surface result for the velocity potential

is, the real part implied,

r°* e
Ac*z R (K 9 ur Te tf<AK0*--;+Z 2, —

(39)

A
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Q <x> «o r

-£) +2 I -
VT yy,., ^S1L

2
; A

A J

e e ^ m e * - (40)
»r>8*

where

19

z + —
W# ^w,8* J

(41)

(43)



* • .fil / ^m8M z v \ "$ (44)
-^BTT -(—^T- - A-s*J IT

e e j2(^) d T

^^e*)^ (45)
U .v» » i

The perturbation pressure, disturbance velocities and mean blade surface

ordinates can be obtained again by Eqs (11) to (18). Examination of Eqs (39)

to (41) shows that there are acoustic modes which are either propagated

undamped, or damped rapidly depending on whether or not A^e^ is imagi-

nary. The cutoff criterion is identical to that for the thickness case.

A particularly interesting feature of the above solution is that there is

no transonic resonance for the case of constant work design, that is, when the

bound circulation is independent of radius. In this case there is no trailing

vorticity and the Reissner wake functions, </Crn(£» , vanish. Hence, in the

expressions for the potential, the quantities Wm^ all vanish and the amplitudes

of the propagating duct modes no longer contain a term inversely proportional

to ^mB-ft •

The hub thickness-to-chord ratio X0 has been used above as a physically

significant small parameter in the thickness case. A physically significant

small parameter is required in the lifting case, too, and to this end, it is

useful to consider the circumferential average of the total pressure rise across

the blade row in duct-fixed coordinates, R^ , say, which was shown in Ref 3

to be given by

«•?.«?'»..,.. j n ' u B r w
' ' " ' ' <46>

where Y is the ratio of specific heats. Note that / is negative when work

is done on the fluid so that the total pressure rise is positive. As indicated in

Eq (46), this relationship holds at each radius. In the special case of constant

work design, which will be considered subsequently in this report, P is con-

stant and so RM is constant everywhere in the annulus. If a normalized total

20



pressure rise factor (T ,̂ is defined by

(Too = #„,- 1

then

r
M

and 0^, is the suitable small parameter. The quantities

be written now as

where

(47)

(48)

in Eq (35b) can

(49)

(50)

The specification of the blade loading must be completed by specifying

the chordwise distribution, i. e. the <7P(if ) in Eq (36). In the present report

a constant chordwise distribution has been assumed, which by Eq (38) must

This uniform distribution is the Oi, - 1 mean line loading that is one case of

the NACA 6- series wing sections, see pp 119 to 122 of Ref 19.

The streamwise, U-g , and normal, U-n , components of the induced

velocity anywhere within the blade row can be found in the uniform chordwise

loading, constant work case by evaluating Eqs (12) and (14) by means of

Eqs (41), (44), (45) and (49) to (51). The results are

sn (52

21



(53>

where

°* = UC^/U (55)

c
The quantities -Om^ , etc. are different from the quantities with the same

notation in the thickness case. Again they are functions of 2 only and have

different forms depending on whether or not the A^g^ are real. Attention in

this report is concentrated on subsonic relative tip Mach numbers for which

all A^g^ are real. The appropriate values of -S ^^ , etc. are given in Table II.

Evaluation of the blade mean surface pressure distribution and ordinates

requires expressions for Us and u.rt on the linearized location of the mean

surface, namely n = 0, i. e., % = & -£ = -*—~, j = 0, 1, . . . , (8-1). If
O y

Eq (52) for U-s is considered first, it can be shown that the ^ term provides

a jump in tangential velocity, A U-s = U 5 ( A , n = o +, S) - U. s (/i,n = o-,s), across the

blade surface as it is approached from above and below. That is, using

Eqs (36), (48) and (51) it follows that

Aus = ~i (56)

The remaining terms in Eq (52) are continuous across the mean blade surface

including the double sum. Therefore, taking the value of £ at the blade

surface, namely zero , the portion of us that is continuous across the blade

surface is _ -

as(A,n = o,s) (1

(57)
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The normal component in Eq (53) is continuous across the mean blade surface,

and is given by

-Z 2
(58)

0 . - _ * * - ' im*i -K*-1 \ )

The blade mean surface ordinates may then be found by integrating Eq (18)

with Eq (58).

2. METHOD OF COMPUTATION

The loading case is very similar to the thickness case from the compu-

tational point of view, as can be seen by comparing Eqs (25) to (27) and Eqs

(54), (57) and (58). The principal task again is the evaluation of Kmg£ and

'~YH-% which is carried out by a slight modification of the computer program

for evaluating Km&fe and Q. mk . For fixed values of 8 and -& and for a

uniform chordwise loading, the P . can be calculated once and for all, see

Eq (50).

A separate computer program has been written to evaluate U-S/U0 (T^ ,

^-•n/^0 °~oo > £f> / GOO and "ft / C 0~Zo . The input required is K^efc

and Pyy,^ from the first program as well as the compressor operating condi-

tions. In the loading case a subroutine has been added to integrate Eq (18).

Convergence properties of the double sums are similar to the thickness

case. A constant chordwise loading distribution gives rise to logarithmic

singularities in uin at the leading and trailing edges, but these singularities

are integrable to obtain the blade ordinates, see pp 73-75 of Ref 19. Overall,

except near the edges, excellent convergence was achieved in the examples

considered with the double sums truncated at a maximum -k, of 7 and a maxi-

mum m of 10.

3. COMPUTED RESULTS

Calculations have been carried out for two sample cases with the same
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conditions as the thickness cases in the previous section. That is, the condi-

tions are 6 = 64, -& = 0. 9, Ca./Lr- 0. 5, M = 0. 6 and the two values of

MT , namely 0. 529 and 0. 775 which give MR values of 0. 80 and 0. 98,

respectively.

Chordwise distributions of that portion of the normalized pressure
<\ t

coefficient, £•*> /o~oo . that is symmetrical above and below the blade mean

surface, from Eqs (17) and (57), are presented in Fig. 6 for MR = 0. 98 at

three radial stations. The pressure is made up of a linear contribution from

the first term in Eq (57) and a double sum contribution that is antisymmetrical

about midchord for the uniform chordwise loading. Although not presented

here, the corresponding results for M^ = 0. 80 differ from those in Fig. 6 by

less than 10 percent everywhere. The differences are in a direction to reduce
*\ .

the slope of Cf /<Ta> as MR increases. It would be instructive in this case

to carry out a strip (cascade) calculation of the symmetrical part of the pres-

sure distribution to establish the three dimensional effects. However, just

as in the thickness case, this has not been carried out as yet.

Chordwise distributions of the mean blade surface ordinates v? , non-

dimensionalized by C O^, , are presented at three radial stations in Fig. 7

for M^ = 0. 80 and in Fig. 8 for MR = 0. 98. The blade mean surface shapes

in the lifting case consist of a positive incidence angle plus a camber distribu-

tion which is symmetrical about midchord for uniform chordwise loading. The

camber shape is generally similar to that for two-dimensional airfoils with

uniform chordwise loading, see the CL - 1 mean line results in Ref 19. The

incidence angle and amount of camber decrease from hub to tip and also

decrease markedly as M# increases.

McCune and Okurounmu have published blade shape results recently in

Ref 4. Their computational scheme differs from the present one although the

basic analysis is the same. Corresponding cases should be examined using

the present scheme so that direct comparisons can be made, but this has not

been done as yet. Nevertheless it is shown in Ref 4 that the blade mean surface

ordinates at any radius go to zero when the relative Mach number is unity at

that radius and this appears to be the trend of the calculations made here.
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V. CONCLUDING REMARKS

Analyses have been carried out for calculation of the velocity and pres-

sure fields within a blade row operating in an infinite annulus at transonic

Mach numbers of the flow relative to the blades. In addition, the relationship

between the induced velocity and the blade mean surface shapes has been

determined. It has been established that the effects of a specified blade thick-

ness distribution can be separated from the effects of a specified distribution

of blade lift. A computational scheme has been developed and used to evaluate

the blade mean surface ordinates and pressure distributions for cases in

which the relative flow velocity incident to the blade tips has a high subsonic

Mach number.

In the thickness case, blade surface pressure distributions have been

calculated in two examples for blades with biconvex parabolic arc sections of

radially tapering thickness. McCune had previously computed pressures for

these examples by means of the same basic analysis, but with a different

computational scheme. Certain differences between the present results and

those of McCune still require resolution. Blade mean surface shapes which

will insure that the blades are locally nonlifting have been calculated for the

first time and are given for the two examples. These results shouM be

examined more fully, particularly with respect to the three-dimensional

effects.

Extension of the analysis and computational procedures to examples for

which the relative tip Mach number is supersonic (retaining a subsonic axial

Mach number) is straightforward and should be undertaken. Not only is this

transonic case of interest with respect to blade row performance, but it is of

great significance from the acoustic point of view. Acoustic energy is radiated

from a single blade row only at supersonic relative tip speeds, as discussed

by Lordi, so that determination of the corresponding blade mean surface shapes

would complete the relationship between detailed blade geometry and acoustic

intensity.

In the lifting case, the portions of the blade surface pressure distributions
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that are symmetrical above and below the blade mean surface have been

calculated in two examples for blades with a uniform chordwise loading and

a constant work spanwise loading. These results, which have also been

obtained for the first time, require further attention to clarify the nature of

the three-dimensional effects. Blade mean surface shapes that are necessary

to achieve the specified blade loading have been calculated in the same two

examples. McCune and Okurounmu have also computed blade mean surface

shapes but again with a different computational scheme. Corresponding

calculations should be made by the present techniques to provide direct

comparisons. It is also important to generalize the present analysis and

computational scheme to account for other chordwise and radial distributions

of blade loadings. Extension to supersonic relative tip speeds should be

carried out as well to complete the relationship between the detailed blade

geometry and the acoustic intensity in the lifting case.

The relative magnitudes of the blade mean surface ordinates due to

thickness and lift are comparable for similar values of hub thickness-to-chord

ratio and the total pressure rise parameter. In particular, as the relative

Mach number at the tip approaches unity and the incidence angle and camber

due to lift decrease greatly, the principal contribution to the blade shape

arises from the thickness. Therefore, thickness plays an important role in

practical blade shape design.
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BLADE FIXED COORDINATES

e =

Figure 1 BLADE GEOMETRY AND FLUID-FIXED COORDINATE SYSTEM
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Figure 2 BLADE SECTION AT CONSTANT RADIUS
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