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SUMMARY

Linearized analyses have been carried out for the induced velocity and
pressure fields within a blade row operating in an infinite annulus at transonic
Mach numbers of the flow relative to the blades. In addition, the relationship
between the induced velocity and the shape of the mean blade surface has been
determined. A computational scheme has been developed for evaluating the
blade mean surface ordinates and surface pressure distributions. The separa-
tion of the effects of a specified blade thickness distribution from the effects
of a specified distribution of the blade lift has been established. In this way,
blade mean surface shapes that are necessary for the blades to be locally
nonlifting have been computed and are presented for two examples of blades
with biconvex parabolic arc sections of radially tapering thickness, Blade
shapes that are required to achieve a zero thickness, uniform chordwise
loading, constant work spanwise loading are also presented for two examples,
In addition, corresponding surface pressure distributions are given., The
flow relative to the blade tips has a high subsonic Mach number in the examples
that have been computed. The results suggest that at near-sonic relative tip
speeds the effective blade shape is dominated by the thickness distribution,

with the lift distribution playing only a minor role.
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I. INTRODUCTION

The transonic flow through an axial compressor exhibits many exfrernely
complicated phenomena. No single analysis can account adequately for three-
dimensional effects, the presence of shock waves and end-wall boundary layers,
interference among blade rows, finite duct effects and other features of the
flow. In the present report attention is focused on the three-dimensional
effects in the flow field of a single blade row rotating in an infinite duct,
Examination of the three-dimensional effects provides an understanding of
some important aspects of the flow over the blades for both compressor per-

formance and noise generation.

A linearized theory for this flow has been developed by McCune (Refs
1 and 2) with more recent extensions by Okurounmu and McCune (Refs 3 and
4), Their basic solutions for the flow through such a blade row are appropriate
not only for computing the flow field in the immediate vicinity of the blades

but also for computing the flow field far up- and downstream of the blade row,

The acoustic far field of the rotating blade row has been examined within
the context of this theory at Cornell Aeronautical Laboratory, Inc. in a related
study and has been reported in Refs 5 and 6. The importance of that research
effort is that the acoustic field can be related directly to the geometry of the
blades and the aerodynamics of the flow through the blade row. Many previous
workers (see Refs 7 to 10, for example) have examined the acoustic field in
such an infinite duct, but with the approximation that the blade forces were

assumed to be known.

In the present investigation, the flow field characteristics within the
blade row, and in particular at the blades themselves, have been examined.
In Refs 5 and 6, the noise generation has been separated, in the linearized
sense, into noise due to blade thickness and noise due to blade lift., The blade
thickness distribution is assumed to be known in the thickness case and the
pressure difference across the blade surface is assumed to be known in the

lifting case, These are sufficient to compute the acoustic far field. In this



study, then, the relationship between the blade geometry and the specified
blade thickness and pressure differences is completed by determining the
ordinates of the mean blade surfaces and the portion of the pressure distribu-

tions which are symmetrical above and below the mean surfaces,

The separation of the flow field into thickness and lifting parts is dis-
cussed in Section II. The concept of a mean blade surface shape that is induced
solely by blade thickness through three-dimensional interactions is of special
importance and is covered in that section. In Section III, the flow field within
the blade row is examined for thickness alone, with numerical results pre-
sented in two cases for the blade mean surface shapes and the blade surface
pressures. The flow field within the blade row and similar numerical results
are examined for lifting blades in Section IV. Finally, concluding remarks

are given in Section V.



II. SEPARATION OF THICKNESS AND LIFTING CASES

The complete independence of the wing thickness and lifting effects in
the linearized representation of a two- or three-dimensional planar wing is
well established, see Refs 11 and 12, for example, The wing may be consid-
ered to have a mean surface shape, above and below which the thickness is
distributed symmetrically., The thickness is represented mathematically by
a surface distribution of sources along a planar surface approximating the
wing, while the pressure difference across the wing is represented by a sur-
face distribution of either doublets or, as used here, vortices along the same

planar surface,

A planar source distribution has the property that each elemental source
induces a discontinuity in normal velocity across the surface locally, but does
not induce a normal velocity component anywhere else along the surface. In
addition, each elemental source induces a tangential velocity component every-
where along the surface, This tangential velocity component is continuous
across the planar surface and is directly proportional to the surface pressure.
If the thickness distribution is specified, then,the boundary condition that the
wing upper and lower surfaces be streamlines leads directly to a relationship
between the chordwise derivative of the thickness distribution and the source
strength. The tangential velocity, and so the surface pressure, can then be
found directly by integration over the source distribution. If, on the other
hand, the tangential velocity or pressure is specified, a singular integral
equation must be solved to determine the source strength. When the solution
for the source strength has been found, the resulting thickness distribution

follows directly from the streamline boundary condition by integration,

A planar vortex distribution has the property that each elemental vortex
induces a discontinuity in the tangential velocity, and so in the surface pres-
sure, across the surface locally, but does not induce a tangential velocity
component anywhere else along the surface., In addition, each elemental
vortex induces a normal velocity component everywhere along the surface.

This normal component is continuous across the planar surface, If the



distribution of the tangential velocity difference, or equivalently the pressure
difference, across the surface is specified, then, the vortex distribution can
be determined directly in terms of the local tangential velocity difference,
The boundary condition that the wing mean surface be a streamline leads
directly to the chordwise derivative of the mean surface shape by an integra-
tion over the vortex distribution, The mean surface ordinates are found by
integration. If, on the other hand, the mean surface ordinates, and so the
chordwise derivatives, are specified, the streamline boundary condition
becomes a singular integral equation for the vortex distribution. When the
solution for the vortex distribution has been found, the tangential velocity

difference, pressure difference and the lift follow directly.

Once the wing is no longer planar, for example if dihedral or twist of
the wing is present or if a lifting system composed of several wings is con-
sidered, the separation of thickness and lift is not so straightforward. The
elemental sources, although still inducing only a normal velocity jump locally,
do induce a normal velocity component along the mean surface at points that
do not lie in the same plane. This normal velocity is continuous across the
mean surface. In a similar way, the elemental vortices, although still induc-
ing only a tangential velocity jump locally, do induce a tangential velocity
component along the mean surface at points that do not lie in the same plane,
This tangential velocity is also continuous across the mean surface, These
additional normal and tangential induced velocity components lead generally
to a coupling between the thickness and lifting effects that is not present for a

planar wing.

The acoustic intensity has been determined separately for blade thickness
and blade lift in Refs 5 and 6. In this way each effect may be assessed sepa-
rately. In the nonlifting case when thickness alone is treated, it is important
to realize that the blades are assumed to be nonlifting locally, i.e., the
pressure difference across the blades is everywhere zero. It is not sufficient
to consider only the total integrated lift to be zero, The so-called design
problem has been considered in Refs 5 and 6, i.e,, it is assumed that in the
thickness case the thickness distribution is known while in the lifting case the

pressure difference across the blade surface is known, In this way, it is not
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necessary to solve any integral equations, as discussed above. It may be
noted that specification of the distributions of thickness and pressure differ-
ence are the standard procedure used in marine propeller design, see Ref 13,

for example.

When thickness alone is considered for the three-dimensional geometry
in which there are many interfering, highly twisted blades, it must be recog-
nized that the source distributions on the blades give rise to a normal velocity
component that is continuous across the mean blade surfaces. In order for
the pressure difference across the blades to be zero everywhere, i, e, to be
locally nonlifting, the mean blade surfaces must be shaped so that they are
streamlines with respect to this induced normal velocity, That is, the inher-
ent coupling between thickness and lift must be broken by shaping the mean
blade surfaces so that the blades carry no lift anywhere on their surfaces.
This procedure has been used in marine propeller design by Kerwin and
Leopold (Refs 13 and 14) to determine a blade incidence correction due to

thickness,

When lifting alone is considered for infinitely thin blades, it must be
recognized that the vortex distributions on the blades give rise to a tangential
velocity component that is continuous across the blade surfaces as well as a
normal component, The normal component again leads to the shaping of the
mean blade surfaces so that they are streamlines of the flow. However, the
mean surface shapes in the lifting case are those necessary to provide the
specified pressure difference across the blades. The tangential component
due to lift leads to a pressure distribution on the blade surfaces that is sym-

metrical above and below the mean blade surface,

Only the design problem is considered in this report. However, the
design problem can be extremely useful from both the acoustic and performance
points of view since it can yield the mean blade surface shapes that are neces-
sary to achieve desirable acoustical or performance properties, Moreover,
successful treatment of the design problem is a requisite first step towards
treatment of the problem in which the thickness and mean blade surface shapes
are completely specified and the acoustic and performance characteristics
must be determined. The coupling between thickness and loading is much

more complex in this case because an integral equation must be solved.
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III. FLOW FIELD WITHIN BLADE ROW DUE TO BLADE THICKNESS

1. SUMMARY OF BASIC ANALYSIS

McCune's analysis (Ref 1) treats a rotating blade row in an infinite
annulus. In fluid fixed coordinates, the blade row advances with axial velocity
U and rotates with angular velocity w (see Fig. 1). If the blades are suf-
ficiently thin so that only small disturbances are generated, the disturbance
velocity potential satisfies the wave equation in fluid fixed coordinates. In a
cylindrical system (4 , 6, X ) fixed to the blades, the flow becomes steady

and the governing equation for velocity potential & becomes

i
S

ﬁ2021+ _\13_2 (1—M292)QG9"2M24’91+4’?9+ —é_ CP? (1)

2

where % = wxs/U, o= wn/U, M=U/a,, A =1-M*

and @, is the undisturbed sound speed. The elementary solution to the

above equation is

, 2
nM

Cpn‘k = R, {'Lne +( /32 t ’\n{-_)z} Rn(an”e_g_) (2)

where the plus sign holds for Z< 0 and the minus sign for Z >0, and

Koa 2 o
"ﬁa 1//3"(;:“)-Mf (3)

A =
Q

M'r = WJLT/a,,, (4)

where A, is the blade tip radius.

The elementary solution given in Eq (2) involves the circumferential
in®
eigenfunction e“"” and the radial eigenfunction R, . For the case of B

radially oriented line sources rotating in an infinite annulus, n = m B where m



is the circumferential mode number and Rms is a normalized combination of

the Bessel functions of the first and second kind of order m8 , namely

RmB (KMB* —9;) = N1 e [JMB (Kmﬂ‘k Q )— LY"B—* y B(KMB'E QT ):l (5)

The factor Nms& is a normalization factor; K, g, is the kth root of the
equation

/

Jig BA)Ys (N) = Tig (1) Ya () = 0 (6)

which results from the boundary condition that the radial velocity vanish at
the inner and outer annulus radii; 4 is the ratio of the hub radius to the tip
radius; and 7, g, is a phase factor given by
’ ’
7m8~£ _ JmB (KMB-E) JmB (% KMB*)

= 7 = 7 (7)
V3_' Yma (Kmsi) yme ('ﬁ-KvnB‘E)

From Eq (3) it can be seen that A,,gg changes from a real quantity to

an imaginary one when the quantity M; = wn,/a, becomes greater than

/3 Koea/ m B . This is the cutoff phenomenon discussed by Tyler and
Sofrin (Ref 7) for duct acoustic modes, When )‘mak is real, the m , #
mode is damped rapidly with distance away from the blade row. When A,.g3
is imaginary, the mode propagates undamped along the duct as a so-called
"spinning acoustic wave.' For U =0, i.e., no through flow, the cutoff
condition reduces to M, = Kms-k /mB , as obtained in Ref 7. For v = 0,

Aok = KO&//S @, » which is always real, and hence this mode always decays.
In the limit m B~ for fixed # , the radial eigenvalues become

Kmek/mB ~ 1+0(m8B )-2/3 . If the first term of this limit is used, the
cutoff condition is that the relative Mach number at the blade tips,

Y
Me = (M?®+ M? ) be supersonic.

McCune (Ref 1) distributed sources over the helical surfaces which
represent the blades and expanded these source distributions in a Fourier-
Bessel series of the elementary solutions. In this way, he obtained the follow-

ing solution for the velocity potential, real part implied,
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T2 ng ) Beaka e me(fmee g 0
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where § is the axial projection of distance along the blade surface at a given
radius and ¢,(@) is the projection of the blade chord C(Q)on the X axis, The
plus sign and the superscript W refer to the region upstream of the point

along the leading edge that lies farthest upstream, i.e. Z = 0; the minus sign
and o refer to the region downstream of the point along the trailing edge that
lies farthest downstream, i.e. 2Z = [Ca(P)] ; and the superscript A refers to

mox

those points within the blade row itself, i.e, 0 < Z < [ (@ The quantities

)
) max
@,,84 (E) , which are the coefficients in the expansion of the source strength,

F(Q@)/Q , are given by

1
Rnpe (E) = '{,1—/":(9’{) V1 +0° RmB(KmBﬁ%—) o (‘g') (10)
T % T T

From this solution for the velocity potential, the perturbation pressure
and velocities anywhere in the flow field can be calculated. In blade fixed

coordinates the pressure and velocity perturbations are given by

d
a_g, P = 0w (Uu + wry,) (1)

1
u_:————-) 'U’e=/—L

where Qg is the undisturbed density, It is more convenient for consideration



of the flow within the blade row to use a coordinate system aligned with the
undisturbed helical flow incident to the blades. A typical blade section at
some radius A& is shown in Fig. 2. The coordinate § lies along the helix
of advance, i.e. it is aligned with the local incident velocity U, which is the
resultant of the axial free stream velocity U and the local rotational com-
ponent wi . The coordinate n is normal to both /t and s in a right-handed
coordinate system (&, n , S ) and is directly proportional, at a given radius,
to the helical coordinate & = 8-Z that often occurs in the theory of rotating
machinery, The velocity components in Eqs (11) can be resolved into com-

ponents WU, and W, , say, inthe S and n directions, respectively, namely

w 4 14
Uy = <az+99> (12)
w 2 29 9
“n s o 095 *30) 13
or
w1+ 0 3@ (14)
Un = 7 QU ¥ TS 76
where, from Fig., 2
U = Uvi+e? (15)
The perturbation pressure, fo , from Eqgs (11) then reduces simply to
(16)
70 = - Poanu’S
or, in coefficient form,
2
€, = P o 2Ry (17)
76U U,

The ordinates of the mean blade surface that is required for the blades
to be locally nonlifting, N(s) in Fig. 2, may be found from the boundary

condition that the mean surface be a streamline, In the linearized approximation



this boundary condition yields the differential equation
dNe  w,lr,n=o0,s)
ds U,

c
Eq (18) is integrated with the condition that ‘77(?) =0 in order to compare

(18)

blade ordinates,

The expressions for the velocity potential given in Eqs (8) and (9) are
greatly simplified by assuming that the blade profiles are similar at each
radial station and that the projection of the chord on the axis is a constant,

€, . For radially similar profiles, the source strength F (¢.§)/Q is
F(o,8) = T() g,(8) (19)

where T(Q) is the thickness ratio at each radius and 1(E) describes the
blade shape. Assuming T(p) in the form T(p) = T,f(¢) where T, is the thick-
ness ratio at the hub and f(@) is a function which is unity at the hub and

describes the radial variation of the thickness ratio, then

Qusa(®) = T, 4,8 @'py (20)
where

1
Qma'k = é/f(e) V1 + Qa RmB (Kms-& "g_T) d (’9_) (21)
% T

In the case of biconvex parabolic arc sections, the integration of each

term in the expression for the velocity potential may be done in closed form,

?,(6) = 4U(1—2?§) (22)

For parabolic arcs

This form has been used for ?,(g’) throughout the present work, However,

the €° integration can be done for any polynomial variation of 3'(5’) .

The streamwise, W, , and normal, W, , components of the induced
velocity anywhere within the blade row can be found for the biconvex parabolic
arc thickness distribution by evaluating Eqs (12) and (14) by means of Eqs (9),
(20), (21) and (22). In general form this gives

10
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Z Z Tma@ [Spg@) cosmBE + 87 @) sin mBzg] 23
m 1 .

U° to Ttpz z0 f =
Wp T ] 2B = ®» mB(+p) c
U, 7, ¢ [UO’C,, s éﬂé., Q T (@ [N""f(?')cas mB& (24)
| + N:“(z) sin mBZ,’]
where .
Q\ea Rms (K /
Tmﬁ(e) B B( B © QT) 7 m= 0 (25)

14—(32

The quantities 5:‘& ,«5':,& , N, and me* are functions of 2 only, but
have different forms depending upon the magnitude of the relative tip Mach
number. For subsonic relative tip Mach numbers, all A,gg in Eq (3) are
real, while for supersonic relative tip Mach numbers, some or all of the

Amgg Will be imaginary and so lead to different forms for 15::,* , etc. because
the real part of Eq (9) must be taken to obtain Eqs (23) and (24)., In the pres-
ent report attention is concentrated on subsonic relative tip speeds and the

appropriate values of 6’:,,* , etc, are given in Table I.

Evaluation of the blade mean surface pressure distribution and ordinates
requires expressions for Wg and W, on the linearized location of the mean
surface, namely n=0 , or in terms of 6 and =z , for Z = 6-z = 2‘#,

«0{ =0, 1, ..., (B-1). Equation (23) for Wg may be evaluated easily in this
limit since the summation over S ., 4(Z) sin mBY vanishes and W, is con-

tinuous across the mean blade surface, The result is

u (n,n=o,s) 28

= (26)
U, T,

2 T (@) Sog (2)

d
3T
»#M3

=0 =1

The normal component W, , however, has a discontinuity across the mean

11



blade surface that is related directly to the source strength, Through an

analysis of the first term in N;Q in Table I it can be shown that summation
24T
of the series will lead to the discontinuity when approaching g = 18 from

above and below the mean surface, with a value of zero at the surface. There-
fore the continuous part of w, atthe mean blade surface, which is the part

required in Eq (18), is given by

wa(2,n=05) _ [u. s(n,n=0, s)]
U, T, B u,z, (27)
® mB(l e
TT/3 m=1 %» Tm-&(e) Nmk(z)

2, METHOD OF COMPUTATION

The principal task in evaluating wg and W, on the mean blade surface
from Egs (26) and (27) is the computation of T,,4 . The 3:,& and N:n.& terms

in Table 1 are complicated algebraically, but can be computed easily.

Computation of T4 involves evaluation of K, and Q:,.a.k . In the
present application to fans and compressors, these computations require
repeated calculations of the Bessel functions of the first and second kinds of
large order. In performing the calculations, the asymptotic expansions
derived by Olver (Ref 15) for the Bessel functions of large order, which are
uniformly valid for all arguments, have been used and greatly facilitate the
computations. The methods developed to apply Olver's expansions to the
evaluation of K,,gg and Q‘MB& are described in Appendix B of Ref 5. Fortu-
, the
ratio of hub radius to the tip radius 3 , and the radial distribution of thick-
ness f (@) , see Eqs (5) to (7) and (21). Thus K,gp and Q. Q;B& may be
computed once and for all with fixed B , +4 and f(@). A computer program

nately K, gp and (o} Q:,,B* are functions only of the blade number B

has been written to perform these operations.

A separate computer program has been written to evaluate LA.S/UOTO
n/ UOZ'O and Cp/fo . This program requires as input the values of
Kmge and @, Q‘mB& found from the first program as well as the compressor

operating conditions. For the cases run to date and reported here, Eq (18)

12



was integrated by hand, but an integration subroutine developed subsequently

for the lifting case can be used.

McCune did not compute W, in Refs 1 and 2, but he did evaluate the
pressure coefficient C,,/T.'o . This evaluation was carried out in an entirely
different way from that described above, namely he computed the velocity
potential along the mean blade surface and differentiated it numerically. The
analysis of Refs 1 and 2 was completed prior to the development of Olver's

expansions (Ref 15), so alternate methods were derived to evaluate KW,B* and
X

QMB* .

It proved to be more convenient in the actual calculation procedure to
sum Eqgs (26) and (27) over m first and then over # . The convergence
properties of the double sums could be monitored more easily this way, Con-
vergence of the double sums is excellent over most of the blade, but becomes
less rapid as the leading and trailing edges are approached. Also, Ww¢ con-
verged slightly faster than W, . A slow convergence rate near the leading
and trailing edges is not unexpected because it is known that, in the linear
approximation, a biconvex parabolic arc airfoil section has logarithmic sin-
gularities in W at the edges. Nevertheless, except very close to the edges,
excellent convergence has been obtained in the cases considered with the

double sums truncated at a maximum # of 7 and 2 maximum m of 15 to 20,

3. COMPUTED RESULTS

Calculations have been carried out for two sample cases, The geometrical
and operating parameters chosen were a blade number, B , of 64; a hub radius
to tip radius ratio, % , of 0.9; a solidity, C. /L, , of 0.5; an axial Mach
number, M , of 0, 6; and two values of the ratio of tip speed to undisturbed
sound speed, M; , namely 0.529 and 0. 775 which give resultant relative tip
Mach numbers, Mg , of 0.80 and 0. 98, respectively, The solidity used here
is defined as the projection of the chord on the axial direction, C, , divided
by the spacing between the blade tips, L, , where L= 21in;/B. Also, the

same thickness ratio variation used by McCune,

On /i +en 28
0 ,——HQZ (28)

T = T,
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was assumed. This T(Q) varies nearly linearly with radius from a value T,

at the hub to tip values of 0.844 T, for Mg = 0.80 and 0.860 T, for M, =0.98,.

Chordwise distributions of normalized pressure coefficient, C1° /T, .,
are presented in Fig, 3 for Mg = 0.98 at three radial stations, The pressure
is symmetrical about midchord for the symmetrical thickness. The corre-
sponding computations from Ref 2 are presented for comparison, along with
the strip (cascade) theory distribution at the blade tip, also from Ref 2, The
differences between the present results and those of Ref 2 have not been
resolved. Differences also exist for Mg = 0. 80, but in that case the present
results lie slightly above McCune's, As a check on the procedure used here,

W, was computed alternately by numerically differentiating the potential in
the same way as in Ref 2. The results were identical to those computed
directly from Eq (26), It is suspected, therefore, that the discrepancies

arise from the different procedures used for computing K,,gg and mea,g .

Chordwise distributions of the mean blade surface ordinates 4 , non-
dimensionalized by €T, , where C is the local chord which varies with the
radius for a constant C, , are presented at three radial stations in Fig. 4 for

Mg = 0.80 and in Fig. 5 for Mg = 0.98. The blade mean surface shapes
consist of a negative incidence angle plus a camber distribution which is
antisymmetric about midchord for the symmetrical thickness distribution
considered here., Comparison of the two cases indicates that as Mg increases
toward unity the incidence angle becomes slightly more negative and the amount

of camber becomes slightly more positive,

There is very little difference from one radius to the next especially for
the example in Fig. 4 where the blade ordinates are virtually indistinguishable
from one another., This indicates that three-dimensional effects may not be of
great importance for these cases, It would be instructive to make a strip
(cascade) calculation of the mean blade surface ordinates to establish the
three-dimensional effects, but this has not been carried out. When Mg increases
to supersonic values, however, it is expected that three-dimensional effects
will be significant, just as they are in the pressure distributions, as McCune

demonstrated in Ref 2.
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Iv. FLOW FIELD WITHIN BLADE ROW DUE TO BLADE LIFT

1. SUMMARY OF BASIC ANALYSIS

Recently, Okurounmu and McCune (Refs 3 and 4) have extended McCune's
earlier analysis to describe the linearized, three-dimensional flow through a
lifting blade row. Their analysis for the lifting case is partly based on the
earlier work of Reissner (Ref 16) and Davidson (Ref 17). Reissner examined
the linearized, incompressible flow through a propeller in free air. His basic
approach was to solve for the velocity potential in the far wake, using a source
distribution to obtain the required discontinuity at the trailing helical vortex
sheets far behind the blades., The blades were represented by vortex lines
having bound circulation F(Q) . Reissner found a source distribution which
would produce the required discontinuity, F'(Q) , in the velocity potential at
the blade wakes, He then had to add another source distribution to cancel the
unwanted effects of the first, off the wakes, This enabled him to compute the
induced velocities due to the vortex lines and their associated wakes of trailing
vorticity, Davidson extended Reissner's solution to the case of a propeller
in a wind tunnel including compressibility effects. It should be mentioned that
Reissner's results have been obtained by other investigators using different

procedures, for example, see Lerbs' derivation in Appendix 1 of Ref 18,

The governing equation for the linearized flow through a lifting blade

row in an infinite annulus is Eq (1), which in the far wake reduces to

2
1 9 19 1 3I7Q
S A O I R I A 29
where & = 6-7 as before. This is the same equation for the wake potential

that Reissner solved. Accounting for the presence of the hub and the shroud,

where the radial velocity must vanish, Okurounmu and McCune obtain the

following result for the wake potential

B bt '
9 = 2 [ret, -2F L @) sn omaz)]

(30)
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where B s again the number of blades, Z;E = 2:'(-2-25—1)12,[:0, 1, ..., (B-1),

= to+ lsf_ between adjacent blades. The blades
' = 0: 1: LR (B'l): and

and varies linearly from -
24T

8 '

are located at C’ =

Kte,) 110, Ko) - K@) K (@) I (@) / T dl ol
m (@) = e o d
K @ Z (Qu, 0:) farar vt
1'(9,) K'(QH) I -1%0)1®,) K(Q)/ dK dI AE
+ —— —
Z (0,,0.) o, 48 df
) Ak or Y dI dr
+ I — — d § - K == == d
where I(p) and Kip) are abbreviated notations for I.,.g(mBp) and
Kug (mMmB8 Q) , the modified Bessel functions of the first and second kind
and order mfB8, and
% = Koy I'tey) - K'ew) 1'¢e) (32)

The solution for the complete potential downstream of the rotor was
obtained by adding particular solutions in the form of Eq (2) and the additional

particular solution "z to the wake solution where

- 2 (33)
= —£ __ M) od
" (1- 4% Q@ / oo

The particular solution is needed because @., plus a general function of Z
satisfies Eq (1). Upstream only the particular solutions in the form of Eq (2)
are needed. Matching the potential and the mass flow at the rotor plane,
Okurounmu and McCune obtain the following solution for the velocity potential

due to B vortex lines rotating in an infinite annulus, real part implied,
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where ['() is the bound circulation and the quantities r'c'i , i » and H, oz

are coefficients in the expansions

r= 1 +E M4 R, (Ko&'g_) (35a)
# =1 T

r = f Pt Rme (Kmog "Q‘) (35b)
=1 T

%m“e) = kZ HYn'E Rm& (KmB% g_ (35c¢)
=1 T

The inclusion of [7 in the solution is seen to be required because the

R, (Ko& 'g; ) do not form a complete set,

This solution was used by Okurounmu and McCune in Ref 3 to compute
the induced drag for a rotor at high subsonic tip speeds, However, these
results cannot be used at supersonic tip speeds because, as they point out,
a vortex line has infinite wave drag in supersonic flow, Later, in Ref 4,

Okurounmu and McCune extend the above result to cover a lifting surface ‘
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model for the rotor blades. With this model, a finite wave drag can be

obtained.

In deriving the lifting surface result, the solution for single vortex lines
is used as the potential due to an elementary strip of blade surface. Then,
by distributing elementary strips of bound circulation over a helical blade
surface and integrating across the chord, the lifting surface result is obtained.

For the special case where the vortex strength, 4 ( e g ), can be factored,

i. e,
[
i, e) - R4¥ (36)
Vi+ Q2
where

cdr
re =/ 1@ 2)Vi+ ot dE G7

Ca
fgz(g’)dg’ = 1 (38)

and (., is the constant projection of the chord on the axis, the quantities Foﬁ ,
f"m{ , and Hm* have the same meaning as in the concentrated bound vortex
solution. For this case, the lifting surface result for the velocity potential

is, the real part implied,

w B = Goalos _PerZ ey, 2 = ' 2
¢ = {-— Z __.__* e RO(KDQ—E_)*.Z Z [——'/LB /S (Fm‘&+Hmk)
f= T m - m

2Tt/32 1 Zl\ok =1 1
(39)
Hmf w 4mB8 (,L ’—"5-:12+ /\mek)z_ e}
+ A ] Gm-& € e ~ RMB(KMB*E —Q—)
mBL T
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The perturbation pressure, disturbance velocities and mean blade surface
ordinates can be obtained again by Eqs (11) to (18). Examination of Eqs (39)
to (41) shows that there are acoustic modes which are either propagated
undamped, or damped rapidly depending on whether or not A, gg is imagi-

nary. The cutoff criterion is identical to that for the thickness case,

A particularly interesting feature of the above solution is that there is
no transonic resonance for the case of constant work design, that is, when the
bound circulation is independent of radius. In this case there is no trailing
vorticity and the Reissner wake functions, X, (p), vanish, Hence, in the
expressions for the potential, the quantities H_g all vanish and the amplitudes
of the propagating duct modes no longer contain a term inversely proportional

to )‘mBi .

The hub thickness-to-chord ratio T, has been used above as a physically
significant small parameter in the thickness case, A physically significant
small parameter is required in the lifting case, too, and to this end, it is
useful to consider the circumferential average of the total pressure rise across
the blade row in duct-fixed coordinates, R, , say, which was shown in Ref 3

to be given by

S XCIR A 7 M? w B )
RW(Q) = = 1= 2 a_, 2 (46)
<<4°°>>z=-oo 27TU(7+—2—'M)

where 7 is the ratio of specific heats. Note that I is negative when work
is done on the fluid so that the total pressure rise is positive, As indicated in
Eq (46), this relationship holds at each radius. In the special case of constant
work design, which will be considered subsequently in this report, M is con-

stant and so Rw is constant everywhere in the annulus, If a normalized total
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pressure rise factor 0Og, is defined by

0 = R_-1 (47)
then 71 ,
2t U (1 + 21 MP)
M= - —; (48)
7Mzw5

and 0O is the suitable small parameter. The quantities [,3 in Eq (35b) can

be written now as 5
e -1 2
2l (1+ TM ) oz

Mg = - 22t o (49)
m* 1 M°wB m¥
where
1
50
Fy:-k =f mB(KmBk ?> d’( >0
2

The specification of the blade loading must be completed by specifying
the chordwise distribution, i.e. the ga(g’) in Eq (36). In the present report
a constant chordwise distribution has been assumed, which by Eq (38) must

be
g9,(&5) - E:: (51)

This uniform distribution is the 4 = 1 mean line loading that is one case of

the NACA 6-series wing sections, see pp 119 to 122 of Ref 19.

The streamwise, Wg , and normal, W, , components of the induced
velocity anywhere within the blade row can be found in the uniform chordwise
loading, constant work case by evaluating Eqs (12) and (14) by means of
Eqs (41), (44), (45) and (49) to (51). The results are

w (1+ ;_

U, 0% M 84 <{(1+Qz) ,32

oo

5 L () [8°. ) esmBE
KI)-"”‘ZE %:1 ""&Q)[ mi cos

=1
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+ N;&(z) sun mBZ,’]} (53)
where N o
S = we, /U (55)

The quantities S:,,k , etc, are different from the quantities with the same
notation in the thickness case. Again they are functions of Z only and have
different forms depending on whether or not the A g4 are real, Attention in
this report is concentrated on subsonic relative tip Mach numbers for which

all )\ma* are real. The appropriate values of Si,,.k , etc, are given in Table II.

Evaluation of the blade mean surface pressure distribution and ordinates
requires expressions for Wy and w, on the linearized location of the mean
surface, namely N =0, i.e,, § = O-2Z = %—BTT-, 1’: o, 1, ..., (B-1). If
Eq (52) for wg is considered first, it can be shown that the :2 term provides
a jump in tangential velocity, Aug = uy(A,n=0+,5)-Us(An =0-,5), across the
blade surface as it is approached from above and below. That is, using

Eqs (36), (48) and (51) it follows that

Aug = -4 (56)

The remaining terms in Eq (52) are continuous across the mean blade surface
including the double sum. Therefore, taking the value of & at the blade
surface, namely zero, the portion of wWw¢ that is continuous across the blade

surface is -

7-1pm2
Uglx,n =o0,s) _ _(1+TM)<{ z o ™ e
U, 0o 7 M6, (1 +9z)/3z *%HZEHLM*(Q)«S’,,,&(Z) (57)
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The normal component in Eq (53) is continuous across the mean blade surface,

and is given by

7-1
Unp(rn=08) [us(ﬂ.nw.s)]_(” 2 M*) Z
om0 M8, ¢

(58)

® © yB(1+Q%)

-7 %1’——9— Lm%(Q)N:n-E(Z)}

The blade mean surface ordinates may then be found by integrating Eq (18)
with Eq (58).

2. METHOD OF COMPUTATION

The loading case is very similar to the thickness case from the compu-
tational point of view, as can be seen by comparing Eqs (25) to (27) and Eqs
(54), (57) and (58). The principal task again is the evaluation of K,gg and

F,:& which is carried out by a slight modification of the computer program
for evaluating K,,gp and Q*,,,* . For fixed values of B and & and for a
uniform chordwise loading, the I"nl can be calculated once and for all, see

Eq (50).

A separate computer program has been written to evaluate Wg/U, 07,

wn/U,05 Cf,/ G0 and N /€0, . The input required is Kmsg

H

and F’:‘n* from the first program as well as the compressor operating condi-

tions. In the loading case a subroutine has been added to integrate Eq (18).

Convergence properties of the double sums are similar to the thickness
case. A constant chordwise loading distribution gives rise to logarithmic
singularities in W, at the leading and trailing edges, but these singularities
are integrable to obtain the blade ordinates, see pp 73-75 of Ref 19, Overall,
except near the edges, excellent convergence was achieved in the examples
considered with the double sums truncated at a maximum # of 7 and a maxi-

mum m of 10.

3. COMPUTED RESULTS

Calculations have been carried out for two sample cases with the same
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conditions as the thickness cases in the previous section. That is, the condi-
tions are B =64, 2 =0.9, Co/L;=0.5 M =0.6 and the two values of
MT , namely 0.529 and 0. 775 which give M, values of 0.80 and 0. 98,

respectively.

Chordwise distributions of that portion of the normalized pressure
coefficient, 61” /a';, » that is symmetrical above and below the blade mean
surface, from Eqs (17) and (57), are presented in Fig, 6 for M, = 0,98 at
three radial stations. The pressure is made up of a linear contribution from
the first term in Eq (57) and a double sum contribution that is antisymmetrical
about midchord for the uniform chordwise loading. Although not presented
here, the corresponding results for Mg = 0. 80 differ from those in Fig. 6 by
less than 10 percent everywhere., The differences are in a direction to reduce
the slope of 61,/0-;, as Mg increases. It would be instructive in this case
to carry out a strip (cascade) calculation of the symmetrical part of the pres-
sure distribution to establish the three dimensional effects, However, just

as in the thickness case, this has not been carried out as yet.

Chordwise distributions of the mean blade surface ordinates ”h , non-
dimensionalized by C 0, , are presented at three radial stations in Fig. 7
for Mg =0.80 and in Fig. 8 for M, = 0.98. The blade mean surface shapes
in the lifting case consist of a positive incidence angle plus a camber distribu-
tion which is symmetrical about midchord for uniform chordwise loading. The
camber shape is generally similar to that for two-dimensional airfoils with
uniform chordwise loading, see the Q@ = | mean line results in Ref 19, The
incidence angle and amount of camber decrease from hub to tip and also

decrease markedly as Mg increases.

McCune and Okurounmu have published blade shape results recently in
Ref 4. Their computational scheme differs from the present one although the
basic analysis is the same, Corresponding cases should be examined using
the present scheme so that direct comparisons can be made, but this has not
been done as yet. Nevertheless it is shown in Ref 4 that the blade mean surface
ordinates at any radius go to zero when the relative Mach number is unity at

that radius and this appears to be the trend of the calculations made here,
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V. CONCLUDING REMARKS

Analyses have been carried out for calculation of the velocity and pres-
sure fields within a blade row operating in an infinite annulus at transonic
Mach numbers of the flow relative to the blades. In addition, the relationship
between the induced velocity and the blade mean surface shapes has been
determined. It has been established that the effects of a specified blade thick-
ness distribution can be separated from the effects of a specified distribution
of blade lift. A computational scheme has been developed and used to evaluate
the blade mean surface ordinates and pressure distributions for cases in
which the relative flow velocity incident to the blade tips has a high subsonic

Mach number,

In the thickness case, blade surface pressure distributions have been
calculated in two examples for blades with biconvex parabolic arc sections of
radially tapering thickness. McCune had previously computed pressures for
these examples by means of the same basic analysis, but with a different
computational scheme. Certain differences between the present results and
those of McCune still require resolution. Blade mean surface shapes which
will insure that the blades are locally nonlifting have been calculated for the
first time and are given for the two examples. These results should be
examined more fully, particularly with respect to the three-dimensional

effects.

Extension of the analysis and computational procedures to examples for
which the relative tip Mach number is supersonic (retaining a subsonic axial
Mach number) is straightforward and should be undertaken. Not only is this
transonic case of interest with respect to blade row performance, but it is of
great significance from the acoustic point of view. Acoustic energy is radiated
from a single blade row only at supersonic relative tip speeds, as discussed
by Lordi, so that determination of the corresponding blade mean surface shapes
would complete the relationship between detailed blade geometry and acoustic

intensity,

In the lifting case, the portions of the blade surface pressure distributions
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that are symmetrical above and below the blade mean surface have been
calculated in two examples for blades with a uniform chordwise loading and
a constant work spanwise loading., These results, which have also been
obtained for the first time, require further attention to clarify the nature of
the three-dimensional effects. Blade mean surface shapes that are necessary
to achieve the specified blade loading have been calculated in the same two
examples, McCune and Okurounmu have also computed blade mean surface
shapes but again with a different computational scheme, Corresponding
calculations should be made by the present techniques to provide direct
comparisons. It is also.important to generalize the present analysis and
computational scheme to account for other chordwise and radial distributions
of blade loadings. Extension to supersonic relative tip speeds should be
carried out as well to complete the relationship between the detailed blade

geometry and the acoustic intensity in the lifting case.

The relative magnitudes of the blade mean surface ordinates due to
thickness and lift are comparable for similar values of hub thickness-to-chord
ratio and the total pressure rise parameter, In particular, as the relative
Mach number at the tip approaches unity and the incidence angle and camber
due to lift decrease greatly, the principal contribution to the blade shape
arises from the thickness, Therefore, thickness plays an important role in

practical blade shape design.
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BLADE FIXED COORDINATES

21=ZI+Ut
17 =@+a)t
n=nr,

Figure 1T BLADE GEOMETRY AND FLUID-FIXED COORDINATE SYSTEM
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Figure 2 BLADE SECTION AT CONSTANT RADIUS
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