47 research outputs found

    Determination of the Wigner function from photon statistics

    Get PDF
    We present an experimental realisation of the direct scheme for measuring the Wigner function of a single quantized light mode. In this method, the Wigner function is determined as the expectation value of the photon number parity operator for the phase space displaced quantum state.Comment: 4 pages LaTeX, contribution to proceedings of 6th central-european workshop on quantum optics; see also http://www.fuw.edu.pl/~kbanasz/QOLab/ExpWigner

    Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Get PDF
    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media

    Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells

    Full text link
    We present an absorption study of the neutral and positively charged exciton (trion) under the influence of a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the hole gas is created by the formation of trions. The evolution of these populations is studied, including the spin flip and trion formation processes. The contributions of several mechanisms to intensity changes are evaluated, including phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in p-doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding heavy holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blockedComment: 4 pages, 4 figure

    Direct measurement of the Wigner function by photon counting

    Full text link
    We report a direct measurement of the Wigner function characterizing the quantum state of a light mode. The experimental scheme is based on the representation of the Wigner function as an expectation value of a displaced photon number parity operator. This allowed us to scan the phase space point-by-point, and obtain the complete Wigner function without using any numerical reconstruction algorithms.Comment: 4 pages, REVTe

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Neutral and charged excitons in a CdTe-based quantum well

    No full text
    We present a summary of our spectroscopic studies of the oscillator strength of transitions related to the formation of neutral and positively charged excitons in modulation p-doped CdTe-based quantum wells. The hole concentration was controlled in the range from 10¹⁰ cm⁻² to 10¹¹ cm⁻². Continuous-wave and time-resolved femtosecond pump–probe absorption measurements were performed. They allowed us to study the interacting system of excitons, trions, and free holes. Characteristic times of the system were determined, such as the trion formation time. A new explanation of so-called oscillator strength «stealing» has been proposed, in terms of spin-dependent screening. Experimental evidence is presented for optical creation of transient spin polarization in the quantum well

    Ultrashort-pulse laser with an intracavity phase shaping element

    Get PDF
    A novel ultrashort-pulse laser cavity configuration that incorporates an intracavity deformable mirror as a phase control element is reported. A user-defined spectral phase relation of 0.7 radians relative shift could be produced at around 1035 nm. Phase shaping as well as pulse duration optimization was achieved via a computer-controlled feedback loop

    Direct measurement of optical quasidistribution functions: multimode theory and homodyne tests of Bell's inequalities

    Full text link
    We develop a multimode theory of direct homodyne measurements of quantum optical quasidistribution functions. We demonstrate that unbalanced homodyning with appropriately shaped auxiliary coherent fields allows one to sample point-by-point different phase space representations of the electromagnetic field. Our analysis includes practical factors that are likely to affect the outcome of a realistic experiment, such as non-unit detection efficiency, imperfect mode matching, and dark counts. We apply the developed theory to discuss feasibility of observing a loophole-free violation of Bell's inequalities by measuring joint two-mode quasidistribution functions under locality conditions by photon counting. We determine the range of parameters of the experimental setup that enable violation of Bell's inequalities for two states exhibiting entanglement in the Fock basis: a one-photon Fock state divided by a 50:50 beam splitter, and a two-mode squeezed vacuum state produced in the process of non-degenerate parametric down-conversion.Comment: 18 pages, 7 figure

    On the Method of Monitoring of Classical Vibrations in Sodium Dimer

    No full text
    A computer simulation of an experiment allowing for monitoring of vibrational motion of the wave packet in the Na2\text{}_{2} molecule is presented. The experiment is based on pump and delayed probe excitation followed by observation of laser-induced fluorescence
    corecore