327 research outputs found
Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion
Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful superbases . Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis. We report the synthesis and isolation of the ortho-diethynylbenzene dianion (ortho-DEB2−) and present observations of this novel species undergoing gas-phase proton-abstraction reactions. Using a theoretical model based on Marcus-Hush theory, we attribute the stability of ortho-DEB2− to the presence of a barrier that prevents spontaneous electron detachment. The proton affinity of 1843 kJ mol−1 calculated for this dianion superbase using high-level quantum chemistry calculations significantly exceeds that of the lithium monoxide anion, the most basic system previously prepared. The ortho-diethynylbenzene dianion is therefore the strongest base that has been experimentally observed to date
Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease
Keratinocyte differentiation is essential for skin development and the formation of the skin permeability barrier. This process involves an orchestrated remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by β-glucocerebrosidase, sphingomyelinase, phospholipases and sterol sulfatase generates ceramides, non-esterified fatty acids and cholesterol for the lipid-containing extracellular matrix, the lamellar membranes in the stratum corneum. The importance of triacylglycerol (TAG) hydrolysis for the formation of a functional permeability barrier was only recently appreciated. Mice with defects in TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2-knock-out) or TAG catabolism (comparative gene identification-58, -CGI-58-knock-out) develop severe permeability barrier defects and die soon after birth because of desiccation. In humans, mutations in the CGI-58 gene also cause (non-lethal) neutral lipid storage disease with ichthyosis. As a result of defective TAG synthesis or catabolism, humans and mice lack ω-(O)-acylceramides, which are essential lipid precursors for the formation of the corneocyte lipid envelope. This structure plays an important role in linking the lipid-enriched lamellar membranes to highly cross-linked corneocyte proteins. This review focuses on the current knowledge of biochemical mechanisms that are essential for epidermal neutral lipid metabolism and the formation of a functional skin permeability barrier
Recommended from our members
BDNF val(66)met Genotype is Associated With Greater Brain Atrophy After Stroke
Impact of protein supplementation during endurance training on changes in skeletal muscle transcriptome
Background: Protein supplementation improves physiological adaptations to endurance training, but the impact on adaptive changes in the skeletal muscle transcriptome remains elusive. The present analysis was executed to determine the impact of protein supplementation on changes in the skeletal muscle transcriptome following 5- weeks of endurance training. Results: Skeletal muscle tissue samples from the vastus lateralis were taken before and after 5-weeks of endurance training to assess changes in the skeletal muscle transcriptome. One hundred and 63 genes were differentially expressed after 5-weeks of endurance training in both groups (q-value 0.05). Endurance training primarily affected expression levels of genes related to extracellular matrix and these changes tended to be greater in PRO than in CON. Conclusions: Protein supplementation subtly impacts endurance training-induced changes in the skeletal muscle transcriptome. In addition, our transcriptomic analysis revealed that the extracellular matrix may be an important factor for skeletal muscle adaptation in response to endurance training. This trial was registered at clinicaltrials.gov as NCT03462381, March 12, 201
Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria
The thermochemistry of linear and branched alkanes with up to eight carbons
has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4'
atomization energies have been obtained via isodesmic and hypohomodesmotic
reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04
n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30
n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22
isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane,
2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81
hexamethylethane. Our best estimates for are: -30.00
n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane,
-32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane,
-40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43
isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane.
These are in excellent agreement (typically better than 1 kJ/mol) with the
experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST
Chemistry WebBook databases. However, at 0 K a large discrepancy between theory
and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation
is mainly due to the erroneous heat content function for neopentane used in
calculating the 0 K CCCBDB value. The thermochemistry of these systems,
especially of the larger alkanes, is an extremely difficult test for density
functional methods. A posteriori corrections for dispersion are essential.
Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP
double-hybrids, and the PW6B95 hybrid-meta GGA clearly outperform other DFT
functionals.Comment: (J. Phys. Chem. A, in press
Impaired immune function in Gulf War Illness
<p>Abstract</p> <p>Background</p> <p>Gulf War Illness (GWI) remains a serious health consequence for at least 11,000 veterans of the first Gulf War in the early 1990s. Our understanding of the health consequences that resulted remains inadequate, and this is of great concern with another deployment to the same theater of operations occurring now. Chronic immune cell dysfunction and activation have been demonstrated in patients with GWI, although the literature is not uniform. We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling.</p> <p>Methods</p> <p>This pilot study enrolled 9 GWI cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age. We measured peripheral blood cell numbers, NK cytotoxicity, cytokines and expression levels of 20,000 genes immediately before, immediately after and 4 hours following a standard bicycle ergometer exercise challenge.</p> <p>Results</p> <p>A repeated-measures analysis of variance revealed statistically significant differences for three NK cell subsets and NK cytotoxicity between cases and controls (p < 0.05). Linear regression analysis correlating NK cell numbers to the gene expression profiles showed high correlation of genes associated with NK cell function, serving as a biologic validation of both the <it>in vitro </it>assays and the microarray platform. Intracellular perforin levels in NK and CD8 T-cells trended lower and showed a flatter profile in GWI cases than controls, as did the expression levels of the perforin gene PRF1. Genes distinguishing cases from controls were associated with the glucocorticoid signaling pathway.</p> <p>Conclusion</p> <p>GWI patients demonstrated impaired immune function as demonstrated by decreased NK cytotoxicity and altered gene expression associated with NK cell function. Pro-inflammatory cytokines, T-cell ratios, and dysregulated mediators of the stress response (including salivary cortisol) were also altered in GWI cases compared to control subjects. An interesting and potentially important observation was that the exercise challenge augments these differences, with the most significant effects observed immediately after the stressor, possibly implicating some block in the NK and CD8 T-cells ability to respond to "stress-mediated activation". This has positive implications for the development of laboratory diagnostic tests for this syndrome and provides a paradigm for exploration of the immuno-physiological mechanisms that are operating in GWI, and similar complex syndromes. Our results do not necessarily elucidate the cause of GWI, but they do reveal a role for immune cell dysfunction in sustaining illness.</p
- …