21 research outputs found

    Rapid Screening of Mupirocin Skin Permeation Modification by Micronized and Nanonized Alaptide

    Get PDF
    The investigation deals with the affection of permeation of mupirocin from the Bactroban® Leciva ointment through full-thickness pig ear skin by alaptide that was applied in micronized or nanonized form as a potential excipient. Alaptide, (S)-8-methyl-6,9-diazaspiro[4.5]decan-7,10-dione, was the original Czech compound. It was discovered that micronized alaptide significantly enhanced the permeation of mupirocin within 1 h after administration (approx. 5-fold). On the other hand, nanonized alaptide almost completely inhibited permeation of mupirocin from Bactroban® Leciva through the skin. Rapid primary screening showed that the two forms of alaptide differently influenced the depth and the rate of permeation/penetration of mupirocin into/through the skin, i.e., affect curative effect of mupirocin on/in skin immediately after application of drug formulation

    In Vitro

    Get PDF
    This study is focused on in vitro permeation of the original Czech compound, a skin/mucosa tissue regeneration promoter, known under the international nonproprietary name “alaptide,” in micronized and nanonized forms. Alaptide showed a great potential for local applications for treatment and/or regeneration of the injured skin. The above mentioned technological modifications influence the permeation of alaptide through artificial or biological membranes, such as PAMPA or skin. The permeation of micronized and nanonized form of alaptide formulated to various semisolid pharmaceutical compositions through full-thickness pig ear skin using a Franz cell has been investigated in detail. In general, it can be concluded that the nanonized alaptide permeated through the skin less than the micronized form; different observations were made for permeation through the PAMPA system, where the micronized form showed lower permeation than the nanonized alaptide

    Nano-selenium and its nanomedicine applications: a critical review.

    Get PDF
    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration

    Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions

    Get PDF
    In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 ÎĽM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 ÎĽg/mL or 15 ÎĽg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 ÎĽM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib

    Rapid Screening of Permeation of Rutin through Skin Using Alaptide Enantiomers

    Get PDF
    The investigation deals with the influence of permeation of rutin from carboxymethyl cellulose gel through full-thickness pig ear skin by (S)- and (R)-alaptide as potential excipients. Alaptide, 8-methyl-6,9-diazaspiro[4.5]decan-7,10-dione, is the original Czech compound. By means of this rapid screening it was found out that the permeation of rutin through the skin increased linearly with time and was enhanced by both enantiomers of alaptide: approx. 1.2-fold by (R)-alaptide and approx. 1.5-fold by (S)-alaptide

    Rapid Screening of Permeation of Rutin through Skin Using Alaptide Enantiomers

    No full text

    Biosensors for the Diagnosis of Celiac Disease: Current Status and Future Perspectives

    No full text
    Celiac disease (CD) is an autoimmune enteropathy initiated and sustained by the ingestion of gluten in genetically susceptible individuals. It is caused by a dysregulated immune response toward both dietary antigens, the gluten proteins of wheat, rye, and barley, and autoantigens, the enzyme tissue transglutaminase (TG2). The small intestine is the target organ. Although routine immunochemical protocols for a laboratory diagnosis of CD are available, faster, easier-to-use, and cheaper analytical devices for CD diagnosis are currently unavailable. This review focuses on biosensors, consisting of a physicochemical transducer and a bioreceptor, as promising analytical tools for diagnosis of CD and other diseases. Examples of recently developed biosensors as well as expectations for future lines of research and development in this field are presented
    corecore