12 research outputs found
Optimisation of high value metabolite production from benthic marine dinoflagellate Prorocentrum lima.
Toxins produced by harmful algal blooms (HABs) are known to pose contamination risks to seafood products (e.g. fish and shellfish) consumed by human. In order to control contamination risks, monitoring regimes have to be performed rigorously. The effort to monitor the amount of toxins in consumable products has to rely on continuous supply to analytical standards. The current work presents the strategy in optimising the production of major diarrhetic shellfish poisoning (DSP) toxins, OA and DTX1, from Prorocentrum lima. The organism is also known to produce peridinin, a carotenoid pigment that has been found to have pharmaceutical potential. Results from this study showed that cultivation of P. lima CCAP 1136/11 was still, although not completely, reliant on supply of natural seawater. Characterisation of compounds produced by P. lima CCAP 1136/11 in batch culture identified three major bioactive compounds (OA, DTX1 and peridinin) and two minor OA-related compounds. Recovery of these major compounds was further optimised with two-stage extraction procedure. Several important considerations for the cultivation process include standardisation of inoculum age and initial cell density. These and several other growth parameters such as temperature, light and CO2 supplementation have been shown to affect the growth and production of DSP toxins and peridinin in the culture. One of the main highlights in this study revealed that providing culture with light and dark cycle at frequency of 0.5 hour benefit in the enhancement of OA, DTX1 and peridinin yield from P. lima CCAP 1136/11. As the last part of this study, a simple and scalable design of reactor has been proposed. Contrary to common observations for dinoflagellate culture, P. lima CCAP 1136/11 was found to be able to withstand increased sparging within the culture system, resulting in concomitant increased of growth and production of OA, DTX1 and peridinin. Future works have been suggested to focus on: (1) exploitation of different cultivation system, such as continuous or semicontinuous systems, and (2) exploration on genetic modification to enable commercial scale production of DSP toxins and peridinin
High value phycotoxins from the dinoflagellate Prorocentrum.
Marine dinoflagellates produce chemically diverse compounds, with a wide range of biological activity (antimicrobial, anticancer, treatment of neurodegenerative disease along with use as biomedical research tools). Chemical diversity is highlighted by their production of molecules such as the saxitoxin family of alkaloids (C10H17N7O4 - 299 g/mol) to the amphipathic maitotoxin (C164H256O68S2Na2 - 3,422 g/mol), representing one of the largest and most complex secondary metabolites characterised. Dinoflagellates, are most well-known for the production of red tides which are frequently toxic, including okadaic acid and related dinophysistoxins, which are tumour promoters. The mode of action for these phycotoxins, is by specific inhibition of protein phosphatases, enzymes essential in regulation of many cellular processes. Hence, these compounds are being used for vital cell regulation studies. However, the availability of useful amounts of these compounds has restricted research. Chemical synthesis of some compounds such as okadaic acid has been investigated, but the complexity of the molecule resulted in many lengthy steps and achieved only a poor yield. The use of naturally occurring phytoplankton has been investigated as a potential source of these compounds, but it has been shown to be unreliable and impractical. The most practical option is large scale culture with down-stream processing/purification which requires specialist facilities and expertise. This review, describes the biotechnological potential of these organisms and the challenges to achieve useful yields of high quality phycotoxins using Prorocentrum spp. as an example to produce okadaic acid
Treatment challenge of a cyanobacterium Romeria elegans bloom in a South Australian wastewater treatment plant: a case study.
A bloom of the non-toxic cyanobacterium Romeria elegans in waste stabilisation ponds (WSPs) within Angaston waste water treatment plant (WWTP) has posed an unprecedented treatment challenge for the local water utility. The water from the WSPs is chlorinated for safety prior to reuse on nearby farmland. Cyanobacteria concentrations of approximately 1.2 × 106 cells mL−1 increased the chlorine demand dramatically. Operators continuously increased the disinfectant dose up to 50 mg L−1 to achieve operational guideline values for combined chlorine (0.5-1.0 mg L−1) prior to reuse. Despite this, attempts to achieve targeted combined chlorine residual (CCR) failed. In this study, samples from the waste stabilisation pond at Angaston WWTP were chlorinated over a range of doses. Combined chlorine, disinfection by-product formation, cyanobacteria cell concentration, Escherichia coli inactivation, as well as dissolved organic carbon and free ammonia were monitored. This study shows that, in the occurrence of cyanobacterial blooms, CCR does not directly suggest pathogen removal efficiency and is therefore not an ideal parameter to evaluate the effectiveness of disinfection process in WWTP. Instead, E. coli removal is a more direct and practical parameter for the determination of the efficiency of the disinfection process
Projected effects of climate change on marine ecosystems in Southeast Asian seas
The seas of Southeast Asia are home to some of the world’s most diverse ecosystems and resources that support the livelihoods of millions of people. Climate change will bring temperature changes, acidification and other environmental change, with uncertain consequences for human and natural systems, but there has been little regional-scale climate modelling of the marine ecosystem. We present initial dynamically downscaled projections using a biogeochemical model suitable for coastal and shelf seas. A coupled physical-biogeochemical model with a resolution of 0.1° (approximately 11 km) was used to create projections of future environmental conditions under moderate (RCP4.5) and high (RCP8.5) greenhouse gas scenarios. Changes for different parts of the region are presented, including four sensitive coastal sites of key importance for biodiversity and sustainable development: UNESCO Biosphere Reserves at Cu Lao Cham-Hoi An in Vietnam, Palawan in the Philippines and Taka Bonerate-Kepulauan Selayar in Indonesia, and coastal waters of Sabah, Malaysia, which include several marine parks. The projections show a sea that is warming by 1.1 to 2.9°C through the 21st century, with dissolved oxygen decreasing by 5 to 13 mmol m-3 and changes in many other environmental variables. The changes reach all parts of the water column and many places are projected to experience conditions well outside the range seen at the start of the century. The resulting damage to coral reefs and altered species distribution would have consequences for biodiversity, the livelihoods of small-scale fishers and the food security of coastal communities. Further work using a range of global models and regional models with different biogeochemical components is needed to provide confidence levels, and we suggest some ways forward. Projections of this type serve as a key tool for communities and policymakers as they plan how they will adapt to the challenge of climate change
Enhancing Human Health and Wellbeing through Sustainably and Equitably Unlocking a Healthy Ocean’s Potential
A healthy ocean is essential for human health, and yet the links between the ocean and human health are often overlooked. By providing new medicines, technologies, energy, foods, recreation, and inspiration, the ocean has the potential to enhance human health and wellbeing. However, climate change, pollution, biodiversity loss, and inequity threaten both ocean and human health. Sustainable realisation of the ocean’s health benefits will require overcoming these challenges through equitable partnerships, enforcement of laws and treaties, robust monitoring, and use of metrics that assess both the ocean’s natural capital and human wellbeing. Achieving this will require an explicit focus on human rights, equity, sustainability, and social justice. In addition to highlighting the potential unique role of the healthcare sector, we offer science-based recommendations to protect both ocean health and human health, and we highlight the unique potential of the healthcare sector tolead this effort
Enhancing Human Health and Wellbeing through Sustainably and Equitably Unlocking a Healthy Ocean's Potential
A healthy ocean is essential for human health, and yet the links between the ocean and human health are often overlooked. By providing new medicines, technologies, energy, foods, recreation, and inspiration, the ocean has the potential to enhance human health and wellbeing. However, climate change, pollution, biodiversity loss, and inequity threaten both ocean and human health. Sustainable realisation of the ocean's health benefits will require overcoming these challenges through equitable partnerships, enforcement of laws and treaties, robust monitoring, and use of metrics that assess both the ocean's natural capital and human wellbeing. Achieving this will require an explicit focus on human rights, equity, sustainability, and social justice. In addition to highlighting the potential unique role of the healthcare sector, we offer science-based recommendations to protect both ocean health and human health, and we highlight the unique potential of the healthcare sector to lead this effort