28 research outputs found
Effect of the COVID-19 Vaccine on the Menstrual Cycle among Females in Saudi Arabia
BACKGROUND: The number of reports of menstrual changes after COVID-19 vaccination in the Saudi population is still unknown. Therefore, this study aimed to assess the effect of the COVID-19 vaccine(Pfizer, AstraZeneca, and Moderna) on the menstrual cycle among females in Saudi Arabia.
METHODS: This descriptive cross-sectional study was conducted in Saudi Arabia at Umm Al-Qura University (UQU) from August 2021 to February 2022. Data was collected through a previously validated online questionnaire.
RESULTS: A total of 2338 participants who received the first dose of the COVID-19 vaccine participated in this study; 1606 (68.7%) of them received the second dose in addition to the first. The mean age of the study participants was 35.4±9.5 years. No significant associations were found between the type of COVID-19 vaccine and the impact on the menstrual cycle, either for the first or second dose (P-values > 0.05). A significant association was found only between the first dose vaccination day and the impact on the menstrual cycle in the second question of âAfter receiving the COVID-19 vaccine, your next period wasâ (P-value †0.05). Significant associations were found between the second dose vaccination day and the impact on the menstrual cycle in the first and second questions of âAfter receiving the COVID-19 vaccine, your next period wasâ, and âAfter receiving the first dose, your next period was," respectively (P-values †0.05).
CONCLUSION: The study found a potential association between the COVID-19 vaccine and menstrual cycle irregularities, which could impact females' quality of life
Protein S-guanylation by the biological signal 8-nitroguanosine 3\u27,5\u27-cyclic monophosphate
The signaling pathway of nitric oxide (NO) depends mainly on guanosine 3âČ,5âČ-cyclic monophosphate (cGMP, 1). Here we report the formation and chemical biology of a nitrated derivative of cGMP, 8-nitroguanosine 3âČ,5âČ-cyclic monophosphate (8-nitro-cGMP, 2), in NO-mediated signal transduction. Immunocytochemistry demonstrated marked 8-nitro-cGMP production in various cultured cells in an NO-dependent manner. This finding was confirmed by HPLC plus electrochemical detection and tandem mass spectrometry. 8-Nitro-cGMP activated cGMP-dependent protein kinase and showed unique redox-active properties independent of cGMP activity. Formation of protein Cys-cGMP adducts by 8-nitro-cGMP was identified as a new post-translational modification, which we call protein S-guanylation. 8-Nitro-cGMP seems to regulate the redox-sensor signaling protein Keap1, via S-guanylation of the highly nucleophilic cysteine sulfhydryls of Keap1. This study reveals 8-nitro-cGMP to be a second messenger of NO and sheds light on new areas of the physiology and chemical biology of signal transduction by NO
An Untargeted Metabolomics Strategy to Identify Substrates of Known and Orphan <i>E. coli</i> Transporters.
Transport systems play a pivotal role in bacterial physiology and represent potential targets for medical and biotechnological applications. However, even in well-studied organisms like Escherichia coli, a notable proportion of transporters, exceeding as many as 30%, remain classified as orphans due to their lack of known substrates. This study leveraged high-resolution LC-MS-based untargeted metabolomics to identify candidate substrates for these orphan transporters. Human serum, including a diverse array of biologically relevant molecules, served as an unbiased source for substrate exposure. The analysis encompassed 26 paired transporter mutant contrasts (i.e., knockout vs. overexpression), compared with the wild type, revealing distinct patterns of substrate uptake and excretion across various mutants. The convergence of candidate substrates across mutant scenarios provided robust validation, shedding light on novel transporter-substrate relationships, including those involving yeaV, hsrA, ydjE, and yddA. Furthermore, several substrates were contingent upon the specific mutants employed. This investigation underscores the utility of untargeted metabolomics for substrate identification in the absence of prior knowledge and lays the groundwork for subsequent validation experiments, holding significant implications for both medical and biotechnological advancements
Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance
Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution
Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell
Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ÎemrE, ÎtolC, and ÎacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance
Membrane transporter identification and modulation via adaptive laboratory evolution
Membrane transport proteins are potential targets for medical and biotechnological applications. However, more than 30% of reported membrane transporter families are either poorly characterized or lack adequate functional annotation. Here, adaptive laboratory evolution was leveraged to identify membrane transporters for a set of four amino acids as well as specific mutations that modulate the activities of these transporters. Specifically, Escherichia coli was adaptively evolved under increasing concentrations of L-histidine, L-phenylalanine, L-threonine, and L-methionine separately with multiple replicate evolutions. Evolved populations and isolated clones displayed growth rates comparable to the unstressed ancestral strain at elevated concentrations (four-to six-fold increases) of the targeted amino acids. Whole genome sequencing of the evolved strains revealed a diverse number of key mutations, including SNPs, small deletions, and copy number variants targeting the transporters leuE for histidine, yddG for phenylalanine, yedA for methionine, and brnQ and rhtC for threonine. Reverse engineering of the mutations in the ancestral strain established mutation causality of the specific mutations for the tolerant phenotypes. The functional roles of yedA and brnQ in the transport of methionine and threonine, respectively, are novel assignments and their functional roles were validated using a flow cytometry cellular accumulation assay. To demonstrate how the identified transporters can be leveraged for production, an L-phenylalanine overproduction strain was shown to be a superior producer when the identified yddG exporter was overexpressed. Overall, the results revealed the striking efficiency of laboratory evolution to identify transporters and specific mutational mechanisms to modulate their activities, thereby demonstrating promising applicability in transporter discovery efforts and strain engineering
Recommended from our members
Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance.
Pseudomonas putida KT2440 is a promising bacterial chassis for the conversion of lignin-derived aromatic compound mixtures to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to aromatic catabolism and toxicity tolerance of P. putida will be required to achieve industrial relevance. Here, tolerance adaptive laboratory evolution (TALE) was employed with increasing concentrations of the hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) individually and in combination (pCA â+ âFA). The TALE experiments led to evolved P. putida strains with increased tolerance to the targeted acids as compared to wild type. Specifically, a 37 âh decrease in lag phase in 20 âg/L pCA and a 2.4-fold increase in growth rate in 30 âg/L FA was observed. Whole genome sequencing of intermediate and endpoint evolved P. putida populations revealed several expected and non-intuitive genetic targets underlying these aromatic catabolic and toxicity tolerance enhancements. PP_3350 and ttgB were among the most frequently mutated genes, and the beneficial contributions of these mutations were verified via gene knockouts. Deletion of PP_3350, encoding a hypothetical protein, recapitulated improved toxicity tolerance to high concentrations of pCA, but not an improved growth rate in high concentrations of FA. Deletion of ttgB, part of the TtgABC efflux pump, severely inhibited growth in pCA â+ âFA TALE-derived strains but did not affect growth in pCA â+ âFA in a wild type background, suggesting epistatic interactions. Genes involved in flagellar movement and transcriptional regulation were often mutated in the TALE experiments on multiple substrates, reinforcing ideas of a minimal and deregulated cell as optimal for domesticated growth. Overall, this work demonstrates increased tolerance towards and growth rate at the expense of hydroxycinnamic acids and presents new targets for improving P. putida for microbial lignin valorization
Recommended from our members
Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance.
Pseudomonas putida KT2440 is a promising bacterial chassis for the conversion of lignin-derived aromatic compound mixtures to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to aromatic catabolism and toxicity tolerance of P. putida will be required to achieve industrial relevance. Here, tolerance adaptive laboratory evolution (TALE) was employed with increasing concentrations of the hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) individually and in combination (pCA â+ âFA). The TALE experiments led to evolved P. putida strains with increased tolerance to the targeted acids as compared to wild type. Specifically, a 37 âh decrease in lag phase in 20 âg/L pCA and a 2.4-fold increase in growth rate in 30 âg/L FA was observed. Whole genome sequencing of intermediate and endpoint evolved P. putida populations revealed several expected and non-intuitive genetic targets underlying these aromatic catabolic and toxicity tolerance enhancements. PP_3350 and ttgB were among the most frequently mutated genes, and the beneficial contributions of these mutations were verified via gene knockouts. Deletion of PP_3350, encoding a hypothetical protein, recapitulated improved toxicity tolerance to high concentrations of pCA, but not an improved growth rate in high concentrations of FA. Deletion of ttgB, part of the TtgABC efflux pump, severely inhibited growth in pCA â+ âFA TALE-derived strains but did not affect growth in pCA â+ âFA in a wild type background, suggesting epistatic interactions. Genes involved in flagellar movement and transcriptional regulation were often mutated in the TALE experiments on multiple substrates, reinforcing ideas of a minimal and deregulated cell as optimal for domesticated growth. Overall, this work demonstrates increased tolerance towards and growth rate at the expense of hydroxycinnamic acids and presents new targets for improving P. putida for microbial lignin valorization
Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance
Pseudomonas putida KT2440 is a promising bacterial chassis for the conversion of lignin-derived aromatic compound mixtures to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to aromatic catabolism and toxicity tolerance of P. putida will be required to achieve industrial relevance. Here, tolerance adaptive laboratory evolution (TALE) was employed with increasing concentrations of the hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) individually and in combination (pCA â+ âFA). The TALE experiments led to evolved P. putida strains with increased tolerance to the targeted acids as compared to wild type. Specifically, a 37 âh decrease in lag phase in 20 âg/L pCA and a 2.4-fold increase in growth rate in 30 âg/L FA was observed. Whole genome sequencing of intermediate and endpoint evolved P. putida populations revealed several expected and non-intuitive genetic targets underlying these aromatic catabolic and toxicity tolerance enhancements. PP_3350 and ttgB were among the most frequently mutated genes, and the beneficial contributions of these mutations were verified via gene knockouts. Deletion of PP_3350, encoding a hypothetical protein, recapitulated improved toxicity tolerance to high concentrations of pCA, but not an improved growth rate in high concentrations of FA. Deletion of ttgB, part of the TtgABC efflux pump, severely inhibited growth in pCA â+ âFA TALE-derived strains but did not affect growth in pCA â+ âFA in a wild type background, suggesting epistatic interactions. Genes involved in flagellar movement and transcriptional regulation were often mutated in the TALE experiments on multiple substrates, reinforcing ideas of a minimal and deregulated cell as optimal for domesticated growth. Overall, this work demonstrates increased tolerance towards and growth rate at the expense of hydroxycinnamic acids and presents new targets for improving P. putida for microbial lignin valorization