19 research outputs found

    Maximizing The Science Returns Of The LINC-NIRVANA Multi-Conjugated Adaptive Optics System

    Get PDF
    Earth's fully turbulent atmosphere prevents ground-based optical and near-infrared telescopes (larger than 30 cm) to reach their full potential, i.e. their diffraction-limited capabilities. In order to overcome this limitation, real-time correction of the aberrations caused by the atmosphere is essential. This is done using a technique called Adaptive Optics (AO). Achieving wide-field correction requires an extension to this technique known as Multi-Conjugated Adaptive Optics (MCAO). My PhD concentrated on max- imising the scientific return of one such MCAO system, the LINC-NIRVANA (LN) instrument currently undergoing commissioning at the Large Binocular Telescope. Starting from alignment and calibration in the lab to the on-going commissioning, I have contributed to the optical assembly, integration, verifica- tion, and software development of the LN MCAO system. I also solved a particular challenge faced by the MCAO systems, namely the "partial illumination issue". In addition, I also developed a concept that can improve the AO performance, which we call as the "wind predictive control". Finally, to understand the astrophysical capabilities of an AO system, I studied a pre-main sequence star system, the T Tauri, using observations from two instruments with advanced AO systems capable of providing high-contrast high-resolution near-infrared imagery

    Solving the MCAO partial illumination issue and laboratory results

    Get PDF
    Telescopes or instruments equipped with Multi-Conjugate Adaptive Optics (MCAO) provide uniform turbulence correction over a wide Field of View (FoV), thereby overcoming the problems of isoplanatism and enabling previously challenging science. LINC-NIRVANA (LN), the German-Italian near-infrared high-resolution imager for the Large Binocular Telescope (LBT), has an advanced and unique MCAO module, which uses the Optical Co-addition of Layer- Oriented Multiple-FoV Natural Guide Star approach to MCAO with pyramid wavefront sensing. The layer-oriented wavefront correction can be performed by conjugating the Deformable Mirrors (DM) and the respective Wavefront Sensors (WFS) to the corresponding atmospheric layers. LN corrects for the aberrations in two different layers. The ground layer, conjugated to the telescope pupil 100m above LBT, is corrected by the Ground-layer Wavefront Sensors (GWS) driving the LBT adaptive secondary mirrors, and a higher layer 7.1km above the telescope is corrected by the High-layer Wavefront Sensors (HWS) driving a pair of Xinetics DMs on the LN bench. At the ground layer, the footprints of the stars overlap completely and every star footprint illuminates the entire pupil-plane. However, for a higher layer, the footprints do not overlap completely and each star illuminates a different region of the conjugated plane. Lack of stars, therefore, results in some regions in this "meta-pupil"-plane not being illuminated, implying no information regarding the aberrations in these areas. The optimum way of correcting the high layer, given this limited information, is the crux of the "partial illumination issue". In this paper, we propose a solution for this issue and discuss laboratory results from the aligned LN bench in the lab. Currently, LN has completed the re-integration and re-alignment at LBT. In early June 2016, we tested our partial illumination algorithm in the instrument's final configuration in the LBT mountain lab, using simulated stars. On sky testing will begin in late 2016

    Operation of a layer-oriented multiconjugate adaptive optics system in the partial illumination regime

    Get PDF
    Multiconjugate adaptive optics (MCAO) promises uniform wide-field atmospheric correction. However, partial illumination of the layers at which the deformable mirrors are conjugated results in incomplete information about the full turbulence field. We report on a working solution to this difficulty for layer-oriented MCAO, including laboratory and on-sky demonstration with the LINC-NIRVANA instrument at the Large Binocular Telescope. This approach has proven to be simple and stable

    Final integration and alignment of LINC-NIRVANA

    Get PDF
    The LBT (Large Binocular Telescope), located at about 3200m on Mount Graham (Tucson, Arizona) is an innovative project undertaken by institutions from Europe and USA. LINC-NIRVANA is an instrument which provides MCAO (Multi-Conjugate Adaptive Optics) and interferometry, combining the light from the two 8.4m telescopes coherently. This configuration offers 23m-baseline optical resolution and the sensitivity of a 12m mirror, with a 2 arc-minute diffraction limited field of view. The integration, alignment and testing of such a big instrument requires a well-organized choreography and AIV planning which has been developed in a hierarchical way. The instrument is divided in largely independent systems, and all of them consist of various subsystems. Every subsystem integration ends with a verification test and an acceptance procedure. When a certain number of systems are finished and accepted, the instrument AIV phase starts. This hierarchical approach allows testing at early stages with simple setups. The philosophy is to have internally aligned subsystems to be integrated in the instrument optical path, and extrapolate to finally align the instrument to the Gregorian bent foci of the telescope. The alignment plan was successfully executed in Heidelberg at MPIA facilities, and now the instrument is being re-integrated at the LBT over a series of 11 campaigns along the year 2016. After its commissioning, the instrument will offer MCAO sensing with the LBT telescope. The interferometric mode will be implemented in a future update of the instrument. This paper focuses on the alignment done in the clean room at the LBT facilities for the collimator, camera, and High-layer Wavefront Sensor (HWS) during March and April 2016. It also summarizes the previous work done in preparation for shipping and arrival of the instrument to the telescope. Results are presented for every step, and a final section outlines the future work to be done in next runs until its final commissioning...

    The calibration procedure of the LINC-NIRVANA ground and high layer WFS

    Get PDF
    LINC--NIRVANA (LN) is an MCAO module currently mounted on the Rear Bent Gregorian focus of the Large Binocular Telescope (LBT). It mounts a camera originally designed to realize the interferometric imaging focal station of the telescopes. LN follows the LBT binocular strategy having two twin channels: a double Layer Oriented Multi-Conjugate Adaptive Optics system assisting the two arms, supplies high order wave-front correction. In order to counterbalance the field rotation, a mechanical derotation is applied for the two ground wave-front sensors, and an optical (K-mirror) one for the two high layers sensors, fixing the positions of the focal planes with respect to the pyramids aboard the wavefront sensors. The derotation introduces a pupil images rotation on the wavefront sensors, changing the projection of the deformable mirrors on the sensor consequently.Comment: 9 pages, 6 figures, proceeding of the SPIE Astronomical Telescopes + Instrumentation meeting, Conference Adaptive Optics Systems VI held in Austin Convention Center, Austin, Texas, United States, 10 - 15 June 201

    Evaluating the performance of an Ingot wavefront sensor for the ELT: Good news from simulations

    Get PDF
    As the new generation of telescopes is coming soon, we need to solve or improve some issues related to the adaptive optics techniques, necessary to fully exploit their extraordinary capabilities in terms of sensitivity and resolution. The Ingot wavefront sensor was thought to overcome some limitations due to the use of artificial sources instead of natural ones: it is designed to cope with the typical elongation of Sodium Laser Guide stars that will be used by the ELTs. Here we present the preliminary tests we performed to properly set up an end-to-end simulator, in order to evaluate the performance of such a device. We describe the different configurations considered and the assumptions we made, discussing also some computational problems we faced building up the tool. We also show the results of the first simulations obtained closing the loop with a mock ELT telescope

    Pupil plane wavefront sensing for extended and 3D sources

    Get PDF
    The basic outline of a pupil plane WaveFront Sensor is reviewed taking into account that the source to be sensed could be different from an unresolved source, i.e. it is extended, and that it could deploy also in a 3D fashion, enough to exceed the field's depth of the observing telescope. Under these conditions it is pointed out that the features of the reference are not invariant for different position on the pupil and it is shown that the INGOT WFS is the equivalent of the Pyramid for a Laser Guide Star. Under these conditions one can imagine to use a Dark WFS approach to improve the SNR of such a WFS, or to use a corrected upward beam in order to achieve a better use of the LGS photons with respect to an ideal Shack-Hartmann WFS

    LINC-NIRVANA Commissioning at the Large Binocular Telescope - Lessons Learned

    Get PDF
    LINC-NIRVANA (LN) is one of the instruments on-board the Large Binocular Telescope (LBT). LN is a high- resolution, near-infrared imager equipped with an advanced adaptive optics module. LN implements layer- oriented Multi-Conjugate Adaptive Optics (MCAO) approach using two independent wavefront sensors per side of the binocular telescope measuring the turbulence volume above the telescope. The capability of acquiring up to 20 Natural Guide Stars simultaneously from two distinct fields of view, and using them for wavefront sensing with 20 separate pyramids per side of the telescope makes the LN MCAO system one of a kind. Commissioning of the left MCAO channel is almost complete, while that of the right arm is on-going. The Science Verification on the left side is expected to start soon after the MCAO performance is optimised for faint guide stars. In this article, we put together the lessons learned during the commissioning of the LN MCAO module. We hope and believe that this article will help the future MCAO instrument commissioning teams

    MAVIS: The adaptive optics module feasibility study

    Get PDF
    The Adaptive Optics Module of MAVIS is a self-contained MCAO module, which delivers a corrected FoV to the postfocal scientific instruments, in the visible. The module aims to exploit the full potential of the ESO VLT UT4 Adaptive Optics Facility, which is composed of the high spatial frequency deformable secondary mirror and the laser guide stars launching and control systems. During the MAVIS Phase A, we evaluated, with the support of simulations and analysis at different levels, the main terms of the error budgets aiming at estimating the realistic AOM performance. After introducing the current opto-mechanical design and AO scheme of the AOM, we here present the standard wavefront error budget and the other budgets, including manufacturing, alignment of the module, thermal behavior and noncommon path aberrations, together with the contribution of the upstream telescope system

    MORFEO enters final design phase

    Full text link
    MORFEO (Multi-conjugate adaptive Optics Relay For ELT Observations, formerly MAORY), the MCAO system for the ELT, will provide diffraction-limited optical quality to the large field camera MICADO. MORFEO has officially passed the Preliminary Design Review and it is entering the final design phase. We present the current status of the project, with a focus on the adaptive optics system aspects and expected milestones during the next project phase
    corecore