1,879 research outputs found
Increasing the susceptibility of the rat 208F fibroblast cell line to radiation-induced apoptosis does not alter its clonogenic survival dose-response.
Recent studies have suggested a correlation between the rate and incidence of apoptosis and the radiation response of particular cell lines. However, we found that increasing the rate of induction of apoptosis in the fibroblast line 208F, by transfecting it with human c-myc, did not lead to a change in its clonogenic survival dose-response for either gamma-irradiation or 125I-induced DNA damage. It was also found that expression of mutant (T24) Ha-ras in the 208F line appeared to decrease the level of apoptosis per mitosis after irradiation and inhibited the formation of nucleosomal ladders, but did not affect either the onset of the morphological features of apoptosis or the clonogenic survival dose-response of the cells to either gamma-irradiation or 125I-induced DNA damage. Our findings suggest that it may be incorrect to make predictions about the radiosensitivity of cells based only on knowledge of their mode of death
Factorizable ribbon quantum groups in logarithmic conformal field theories
We review the properties of quantum groups occurring as Kazhdan--Lusztig dual
to logarithmic conformal field theory models. These quantum groups at even
roots of unity are not quasitriangular but are factorizable and have a ribbon
structure; the modular group representation on their center coincides with the
representation on generalized characters of the chiral algebra in logarithmic
conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition
Exposure of benthic invertebrates to sediment vibration: From laboratory experiments to outdoor simulated pile-driving
This is the final version of the article. Available from Acoustical Society of America via the DOI in this record.Fourth International Conference on the Effects of Noise on Aquatic Life, Dublin, Ireland, 10-16 July 2016Activities directly interacting with the seabed, such as pile-driving, can produce vibrations that have the potential to impact benthic invertebrates within their vicinity. This stimuli may interfere with crucial behaviors such as foraging and predator avoidance, and the sensitivity to vibration is largely unknown. Here, the responsiveness of benthic invertebrates to sediment vibration is discussed in relation to laboratory and semi-field trials with two marine species: the mussel (Mytilus edulis) and hermit crab (Pagurus bernhardus). Sensory threshold curves were produced for both species in controlled laboratory conditions, followed by small-scale pile-driving exposures in the field. The merits of behavioral indicators are discussed, in addition to using physiological measures, as a method of determining reception and measuring responses. The measurement and sensors required for sediment vibration quantification are also discussed. Response and threshold data were related to measurements taken in the vicinity of anthropogenic sources, allowing a link between responsiveness and actual operations. The impact of pile-driving on sediment-dwelling invertebrates has received relatively little research, yet the data here suggest that such activities are likely to impact key coastal species which play important roles within the marine environment.LR would like to thank the organizers and sponsors of the 2016 conference for
supporting her attendance for which she is extremely grateful. This study was partially
funded by a research award from the Malacological Society of London to LR. The
authors would also like to acknowledge Defra and NERC who funded the laboratory and
field work aspects respectively, and the staff at the OREC field site, Blyth
Calling by Concluding Sentinels: Coordinating Cooperation or Revealing Risk?
Efficient cooperation requires effective coordination of individual contributions to the cooperative behaviour. Most social birds and mammals involved in cooperation produce a range of vocalisations, which may be important in regulating both individual contributions and the combined group effort. Here we investigate the role of a specific call in regulating cooperative sentinel behaviour in pied babblers (Turdoides bicolor). ‘Fast-rate chuck’ calls are often given by sentinels as they finish guard bouts and may potentially coordinate the rotation of individuals as sentinels, minimising time without a sentinel, or may signal the presence or absence of predators, regulating the onset of the subsequent sentinel bout. We ask (i) when fast-rate chuck calls are given and (ii) what effect they have on the interval between sentinel bouts. Contrary to expectation, we find little evidence that these calls are involved in regulating the pied babbler sentinel system: observations revealed that their utterance is influenced only marginally by wind conditions and not at all by habitat, while observations and experimental playback showed that the giving of these calls has no effect on inter-bout interval. We conclude that pied babblers do not seem to call at the end of a sentinel bout to maximise the efficiency of this cooperative act, but may use vocalisations at this stage to influence more individually driven behaviours
Very high rotational frequencies and band termination in 73Br
Rotational bands in 73Br have been investigated up to spins of 65/2 using the
EUROBALL III spectrometer. One of the negative-parity bands displays the
highest rotational frequency 1.85 MeV reported to date in nuclei with mass
number greater than 25. At high frequencies, the experimental dynamic moment of
inertia for all bands decrease to very low values, indicating a loss of
collectivity. The bands are described in the configuration-dependent cranked
Nilsson-Strutinsky model. The calculations indicate that one of the
negative-parity bands is observed up to its terminating single-particle state
at spin 63/2. This result establishes the first band termination case in the A
= 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid
Communicatio
Geometric deep learning
The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas
- …