We review the properties of quantum groups occurring as Kazhdan--Lusztig dual
to logarithmic conformal field theory models. These quantum groups at even
roots of unity are not quasitriangular but are factorizable and have a ribbon
structure; the modular group representation on their center coincides with the
representation on generalized characters of the chiral algebra in logarithmic
conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition