Abstract

We review the properties of quantum groups occurring as Kazhdan--Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019