9 research outputs found

    Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    Get PDF
    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals

    From a water resource to a point pollution source: the daily journey of a coastal urban stream

    No full text
    The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures

    Antioxidant biomarkers in gammarus pulex to evaluate the efficiency of electrocoagulation process in landfill leachate treatment

    No full text
    The discharge of landfill leachate into the environment without effective treatment poses a serious threat for the aquatic ecosystems. This present study was undertaken to evaluate whether electrocoagulation process is efficient for treatment landfill leachate (LL) or not by using antioxidant biomarkers in Gammarus pulex. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities and malondialdehyde (MDA) and glutathione (GSH) levels in G. pulex exposed to untreated, treated, and diluted rates 1/10 and 1/20 in both LL during 24 and 96 h were tested. Physiochemical characteristics of leachate (chemical oxygen demand, electrical conductivity, pH, phosphate, turbidity, NH3, Cl-, and color) were determined pre and post treatment. All physiochemical characteristics of LL decreased after treatment process. GSH-Px and CAT activities and GSH and MDA levels were increased in untreated groups when compared to control (p < 0.05). After treatment by electrocoagulation, MDA and GSH levels and CAT activities were returned to control values. In conclusion, the abilities of LL to stimulate oxidative stress in G. pulex have been proven. The results revealed that antioxidant parameters are useful biomarkers for determining the treatment efficiency of the electrocoagulation process
    corecore