1,647 research outputs found

    Why patients may not exercise their choice when referred for hospital care:An exploratory study based on interviews with patients

    Get PDF
    Background Various north-western European health-care systems encourage patients to make an active choice of health-care provider. This study explores, qualitatively, patients' hospital selection processes and provides insight into the reasons why patients do or do not make active choices. Methods Semi-structured individual interviews were conducted with 142 patients in two departments of three Dutch hospitals. Interviews were recorded, transcribed and analysed in accordance with the grounded theory approach. Results Three levels of choice activation were identified – passive, semi-active and active. The majority of the patients, however, visited the default hospital without having used quality information or considered alternatives. Various factors relating to patient, provider and health-care system characteristics were identified that influenced patients' level of choice activation. On the whole, the patients interviewed could be classified into five types with regard to how they chose, or ‘ended up at’ a hospital. These types varied from patients who did not have a choice to patients who made an active choice. Conclusions A large variation exists in the way patients choose a hospital. However, most patients tend to visit the default without being concerned about choice. Generally, they do not see any reason to choose another hospital. In addition, barriers exist to making choices. The idea of a patient who actively makes a choice originates from neoclassical microeconomic theory. However, policy makers may try in vain to bring principles originating from this theory into health care. Even so, patients do value the opportunity of attending ‘their’ own hospital

    Studies on breeding dwarf poinsettias (Euphorbia pulcherrima Willd.) and the influence of infective agents

    Get PDF
    BACKGROUND: Hypoxia, metabolism, and growth factor signaling are important prognostic features in most solid tumors. The purpose of this study was to determine whether head and neck squamous cell carcinoma (HNSCC) xenografts show similar biological and molecular characteristics as the primary tumor they originate from. METHODS: Eighteen HNSCC primary tumor-xenograft pairs were immunofluorescently stained for pimonidazole (hypoxia), carbonic anhydrase IX (CAIX), glucose transporter-1 (GLUT-1), monocarboxylate transporter-1 (MCT-1), monocarboxylate transporter-4 (MCT-4), epidermal growth factor receptor (EGFR), and phosphorylated protein kinase B (pAKT). RESULTS: Although no correlation was found for the amount of hypoxia, significant correlations between primary tumors and xenografts were observed for both the percentage of cells positive for expression and the hypoxia-related expression pattern of CAIX, GLUT-1, and MCT-1. For EGFR and MCT-4, the intensity of expression was correlated. No correlation was observed for pAKT. CONCLUSION: Xenografts did not always resemble the primary tumor they originate from, but the xenografts did represent the variability in expression levels and patterns observed in the primary tumors

    An assessment on the unsteady flow distortion generated by an S-duct intake

    Get PDF
    Closer integration between the fuselage and the propulsion system is expected for futureaircraft toreducefuel consumption, emissions, weight and drag. The use of embedded or partially embedded propulsion systems may require the use of complex intakes. However, thiscanresult in unsteady flow distortion which can adversely affect the propulsion system efficiency and stability. This works assesses the characteristics of the unsteady flow with a view to the potential flow distortion presented to the compression system.Particle image velocimetry is used to measure the flow distortion generated by an S-shaped intake.The time-resolved tracking of the idealized relative incidence angle revealed that most frequent distortion events exhibited90°exposure sector and upto±5°meanrelativeincidence. The imposition of a thicker boundary at the S-duct inlet increased the probability of distortion events that are characterized by a longer exposure sector and higher relative incidence angles.Because of these characteristics, thedistortion caused by the S-duct intake could induce instabilities that are detrimental for the propulsion system performances and stability. Overall, this work proposes a new method to assess thepossible relativeincidence angle on the compressor rotor taking into account the intake flow unsteadiness

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis

    Optical Imaging

    Get PDF
    Optical Coherence Tomography (OCT)We describe the fundamental concept of optical coherence tomography (OCT) and discuss the two main working principles time domain OCT and frequency domain OCT. Then, we review extended functionalities including spectrally and polarization-resolved OCT as well as Doppler-OCT and show concepts for contrast enhancement. Based on these fundamentals, we demonstrate the potential of OCT for small animal imaging on the basis of exemplary studies on retinal imaging and lung imaging.Optoacoustic ImagingThis chapter deals with the fascinating topic of optoacoustic imaging, a recent powerful addition to the arsenal of in vivo functional and molecular small animal imaging. Due to its hybrid nature, involving optical excitation and ultrasonic detection, optoacoustics overcomes the imaging depth limitations of optical microscopy related to light scattering in living tissues while further benefiting from the compelling advantages of optical contrast. To this end, optoacoustic imaging has been shown capable of delivering multiple types of imaging contrast (structural, functional, kinetic, molecular) within a single imaging modality. It can further deliver images with high spatiotemporal resolution that rivals performance of other well-established whole-body imaging modalities. As such, optoacoustics can play a vital role in biomedical research, from early disease detection and monitoring of dynamic phenomena noninvasively to accelerating drug discovery.Optical ProbesThis chapter is devoted to the properties and application of fluorescence dyes as probes for optical imaging. A variety of agents have been described to date, including nontargeting dyes, vascular agents, targeted conjugates, activatable dyes, and sensing probes. The major classes encompass polymethine dyes and xanthenes dyes, both of which are commercially available in broad variations. Addressing the purpose of optical animal imaging, the most relevant parameters to apply such probes are discussed, thereby supporting the reader in choosing reasonable imaging probes and in preparing bioconjugates for his studies

    Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia

    Get PDF
    Loss-of-function mutations in progranulin (GRN) cause ubiquitin- and TAR DNA-binding protein 43 (TDP-43)-positive frontotemporal dementia (FTLD-U), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Here we expand the role of GRN in FTLD-U and demonstrate that a common genetic variant (rs5848), located in the 3′-untranslated region (UTR) of GRN in a binding-site for miR-659, is a major susceptibility factor for FTLD-U. In a series of pathologically confirmed FTLD-U patients without GRN mutations, we show that carriers homozygous for the T-allele of rs5848 have a 3.2-fold increased risk to develop FTLD-U compared with homozygous C-allele carriers (95% CI: 1.50–6.73). We further demonstrate that miR-659 can regulate GRN expression in vitro, with miR-659 binding more efficiently to the high risk T-allele of rs5848 resulting in augmented translational inhibition of GRN. A significant reduction in GRN protein was observed in homozygous T-allele carriers in vivo, through biochemical and immunohistochemical methods, mimicking the effect of heterozygous loss-of-function GRN mutations. In support of these findings, the neuropathology of homozygous rs5848 T-allele carriers frequently resembled the pathological FTLD-U subtype of GRN mutation carriers. We suggest that the expression of GRN is regulated by miRNAs and that common genetic variability in a miRNA binding-site can significantly increase the risk for FTLD-U. Translational regulation by miRNAs may represent a common mechanism underlying complex neurodegenerative disorders

    The ALICE Data Challenges

    Get PDF
    Since 1998, the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises: the ALICE data challenges. The goals of these regular exercises are to test hardware and software components of the data acquisition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure. This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001. The data used during the ADC III are simulated physics raw data of the ALICE TPC, produced with the ALICE simulation program AliRoot. The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system. The data after event building were then formatted with the ROOT I/O package and a data catalogue based on MySQL was established. The Mass Storage System used during ADC III is CASTOR. Different software tools have been used to monitor the performances. DATE has demonstrated performances of more than 500 MByte/s. An aggregate data throughput of 85 MByte/s was sustained in CASTOR over several days. The total collected data amounts to 100 TBytes in 100,000 files

    Highlights of the 2009 scientific sessions of the European Society of Cardiology.

    Get PDF
    Nebivolol is a third-generation beta-adrenergic receptor antagonist (beta-blocker) with high selectivity for beta(1)-adrenergic receptors. In addition, it causes vasodilatation via interaction with the endothelial L-arginine/nitric oxide (NO) pathway. This dual mechanism of action underlies many of the haemodynamic properties of nebivolol, which include reductions in heart rate and blood pressure (BP), and improvements in systolic and diastolic function. With respect to BP lowering, the NO-mediated effects cause a reduction in peripheral vascular resistance and an increase in stroke volume with preservation of cardiac output. Flow-mediated dilatation and coronary flow reserve are also increased during nebivolol administration. Other haemodynamic effects include beneficial effects on pulmonary artery pressure, pulmonary wedge pressure, exercise capacity and left ventricular ejection fraction. In addition, nebivolol does not appear to have adverse effects on lipid metabolism and insulin sensitivity like traditional beta-blockers. The documented beneficial haemodynamic effects of nebivolol are translated into improved clinical outcomes in patients with hypertension or heart failure. In patients with hypertension, the incidence of bradycardia with nebivolol is often lower than that with other currently available beta-blockers. This, along with peripheral vasodilatation and NO-induced benefits such as antioxidant activity and reversal of endothelial dysfunction, should facilitate better protection from cardiovascular events. In addition, nebivolol has shown an improved tolerability profile, particularly with respect to events commonly associated with beta-blockers, such as fatigue and sexual dysfunction. Data from SENIORS (Study of the Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors with Heart Failure) showed that significantly fewer nebivolol versus placebo recipients experienced the primary endpoint of all-cause mortality or cardiovascular hospitalization. The benefits of nebivolol therapy were shown to be cost effective. Thus, nebivolol is an effective and well tolerated agent with benefits over and above those of traditional beta-blockade because of its effects on NO release, which give it unique haemodynamic effects, cardioprotective activity and a good tolerability profile
    corecore