283 research outputs found

    An in vitro model of chronic wounding and its implication for age-related macular degeneration

    Get PDF
    Degeneration of the retinal pigment epithelium (RPE) plays a central role in age-related macular degeneration (AMD). Throughout life, RPE cells are challenged by a variety of cytotoxic stressors, some of which are cumulative with age and may ultimately contribute to drusen and lipofuscin accumulation. Stressors such as these continually damage RPE cells resulting in a state of chronic wounding. Current cell-based platforms that model a state of chronic RPE cell wounding are limited, and the RPE cellular response is not entirely understood. Here, we used the electric cell-substrate impedance sensing (ECIS) system to induce a state of acute or chronic wounding on differentiated human fetal RPE cells to analyze changes in the wound repair response. RPE cells surrounding the lesioned area employ both cell migration and proliferation to repair wounds but fail to reestablish their original cell morphology or density after repetitive wounding. Chronically wounded RPE cells develop phenotypic AMD characteristics such as loss of cuboidal morphology, enlarged size, and multinucleation. Transcriptomic analysis suggests a systemic misregulation of RPE cell functions in bystander cells, which are not directly adjacent to the wound. Genes associated with the major RPE cell functions (LRAT, MITF, RDH11) significantly downregulate after wounding, in addition to differential expression of genes associated with the cell cycle (CDK1, CDC6, CDC20), inflammation (IL-18, CCL2), and apoptosis (FAS). Interestingly, repetitive wounding resulted in prolonged misregulation of genes, including FAS, LRAT, and PEDF. The use of ECIS to induce wounding resulted in an over-representation of AMD-associated genes among those dysregulated genes, particularly genes associated with advanced AMD. This simple system provides a new model for further investigation of RPE cell wound response in AMD pathogenesis

    Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks

    Get PDF
    Abstract Background Age-related macular degeneration (AMD) is a leading cause of blindness that affects the central region of the retinal pigmented epithelium (RPE), choroid, and neural retina. Initially characterized by an accumulation of sub-RPE deposits, AMD leads to progressive retinal degeneration, and in advanced cases, irreversible vision loss. Although genetic analysis, animal models, and cell culture systems have yielded important insights into AMD, the molecular pathways underlying AMD's onset and progression remain poorly delineated. We sought to better understand the molecular underpinnings of this devastating disease by performing the first comparative transcriptome analysis of AMD and normal human donor eyes. Methods RPE-choroid and retina tissue samples were obtained from a common cohort of 31 normal, 26 AMD, and 11 potential pre-AMD human donor eyes. Transcriptome profiles were generated for macular and extramacular regions, and statistical and bioinformatic methods were employed to identify disease-associated gene signatures and functionally enriched protein association networks. Selected genes of high significance were validated using an independent donor cohort. Results We identified over 50 annotated genes enriched in cell-mediated immune responses that are globally over-expressed in RPE-choroid AMD phenotypes. Using a machine learning model and a second donor cohort, we show that the top 20 global genes are predictive of AMD clinical diagnosis. We also discovered functionally enriched gene sets in the RPE-choroid that delineate the advanced AMD phenotypes, neovascular AMD and geographic atrophy. Moreover, we identified a graded increase of transcript levels in the retina related to wound response, complement cascade, and neurogenesis that strongly correlates with decreased levels of phototransduction transcripts and increased AMD severity. Based on our findings, we assembled protein-protein interactomes that highlight functional networks likely to be involved in AMD pathogenesis. Conclusions We discovered new global biomarkers and gene expression signatures of AMD. These results are consistent with a model whereby cell-based inflammatory responses represent a central feature of AMD etiology, and depending on genetics, environment, or stochastic factors, may give rise to the advanced AMD phenotypes characterized by angiogenesis and/or cell death. Genes regulating these immunological activities, along with numerous other genes identified here, represent promising new targets for AMD-directed therapeutics and diagnostics. Please see related commentary: http://www.biomedcentral.com/1741-7015/10/21/abstrac

    Reproductive non-seasonality in rhinoceroses: A review of the in-situ literature and birth records of ex-situ institutions

    Full text link
    Mammals whose breeding activity is triggered by seasonal photoperiodic cues typically maintain seasonal reproduction in zoos, with births accumulating to various degrees in spring. For zoo-kept rhinoceroses, accumulation of births in autumn has been suggested, which would make this group unusual. We compare birthing (and hence conception) patterns of free-ranging rhinoceros populations from the scientific literature with those of the global zoo populations based on birth data available from Species360, to facilitate deductions on the cues that trigger rhinoceros reproduction. The patterns do not indicate a photoperiodic element in rhinoceros reproduction but suggest suppression of conception in free-ranging populations at times of resource scarcity. This is not evident in zoos. However, a slight accumulation of autumn births, due to a slight reduction in births in spring, is visible in the zoo populations. Given rhinoceros gestation periods, this is linked to reduced conceptions in November–December. The most parsimonious interpretation is management-related, as has been suggested (Roth 2006, Int. Zoo Yb. 40(1): 130–143): not all facilities are prepared to allow mating at times when outdoor husbandry is reduced due to weather restrictions. Given the long interbirth intervals of rhinoceroses, missed conception opportunities of 1–2 months are unlikely to affect population demographics. Nevertheless, detailed recording of approaches to facilitate mating during winter months by those zoos that achieve this may increase the general skill of rhinoceros management

    Sphingosine 1-phosphate modulates antigen capture by murine langerhans cells via the S1P2 receptor subtype

    Get PDF
    Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions

    Density-functional study of hydrogen chemisorption on vicinal Si(001) surfaces

    Full text link
    Relaxed atomic geometries and chemisorption energies have been calculated for the dissociative adsorption of molecular hydrogen on vicinal Si(001) surfaces. We employ density-functional theory, together with a pseudopotential for Si, and apply the generalized gradient approximation by Perdew and Wang to the exchange-correlation functional. We find the double-atomic-height rebonded D_B step, which is known to be stable on the clean surface, to remain stable on partially hydrogen-covered surfaces. The H atoms preferentially bind to the Si atoms at the rebonded step edge, with a chemisorption energy difference with respect to the terrace sites of >sim 0.1 eV. A surface with rebonded single atomic height S_A and S_B steps gives very similar results. The interaction between H-Si-Si-H mono-hydride units is shown to be unimportant for the calculation of the step-edge hydrogen-occupation. Our results confirm the interpretation and results of the recent H_2 adsorption experiments on vicinal Si surfaces by Raschke and Hoefer described in the preceding paper.Comment: 13 pages, 8 figures, submitted to Phys. Rev. B. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    First principles theory of inelastic currents in a scanning tunneling microscope

    Get PDF
    A first principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below an STM tip. We calculate the desorption rate of H from Si(100)-H(2×\times1) as function of the sample bias and tunnel current, and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file

    Subcellular distribution of FTY720 and FTY720-phosphate in immune cells - another aspect of Fingolimod action relevant for therapeutic application

    Get PDF
    FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates
    corecore