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Abstract

Degeneration of the retinal pigment epithelium (RPE) plays a central role in age-related

macular degeneration (AMD). Throughout life, RPE cells are challenged by a variety of cyto-

toxic stressors, some of which are cumulative with age and may ultimately contribute to dru-

sen and lipofuscin accumulation. Stressors such as these continually damage RPE cells

resulting in a state of chronic wounding. Current cell-based platforms that model a state of

chronic RPE cell wounding are limited, and the RPE cellular response is not entirely under-

stood. Here, we used the electric cell-substrate impedance sensing (ECIS) system to induce

a state of acute or chronic wounding on differentiated human fetal RPE cells to analyze

changes in the wound repair response. RPE cells surrounding the lesioned area employ

both cell migration and proliferation to repair wounds but fail to reestablish their original cell

morphology or density after repetitive wounding. Chronically wounded RPE cells develop

phenotypic AMD characteristics such as loss of cuboidal morphology, enlarged size, and

multinucleation. Transcriptomic analysis suggests a systemic misregulation of RPE cell

functions in bystander cells, which are not directly adjacent to the wound. Genes associated

with the major RPE cell functions (LRAT, MITF, RDH11) significantly downregulate after

wounding, in addition to differential expression of genes associated with the cell cycle

(CDK1, CDC6, CDC20), inflammation (IL-18, CCL2), and apoptosis (FAS). Interestingly,

repetitive wounding resulted in prolonged misregulation of genes, including FAS, LRAT, and

PEDF. The use of ECIS to induce wounding resulted in an over-representation of AMD-

associated genes among those dysregulated genes, particularly genes associated with

advanced AMD. This simple system provides a new model for further investigation of RPE

cell wound response in AMD pathogenesis.
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Introduction

Retinal pigment epithelium (RPE) cells are a monolayer of highly specialized pigmented cells

residing between the retinal photoreceptors and Brüch’s membrane. A single RPE cell main-

tains the health of approximately thirty photoreceptors by phagocytosing outer segments and

supporting the visual cycle, among other functions [1]. As a layer of epithelium, RPE cells

selectively transport substances across the blood-retinal-barrier (BRB) and secrete growth fac-

tors such as PEDF and VEGF to support the neural retina and choriocapillaris [2–4]. RPE cells

play a vital role in the maintenance of retinal health; as such, degeneration of this simple layer

of cells can cause an imbalance in the homeostasis of the subretinal space and may lead to per-

manent visual impairment [5, 6].

The loss of RPE cells is believed to be a crucial step in the onset of age-related macular

degeneration (AMD), the leading cause of irreversible blindness in the elderly population of

the developed world. Early stages of AMD can be identified by the presence of drusen, extra-

cellular deposits located between the RPE and Bruch’s membrane, and RPE cell abnormalities,

including changes in pigmentation [7–9]. As the disease advances to later stages, it can take on

two clinically distinct yet not mutually exclusive forms commonly referred to as dry and wet

AMD [10–13]. Approximately 12% of early AMD cases develop into an advanced subtype of

dry AMD called geographic atrophy (GA), which is characterized by the progressive degenera-

tion of the RPE cells, photoreceptors, and choroidal capillaries near the macular region [14–

18]. Additional RPE cell abnormalities associated with GA include enlarged and multi-nucle-

ated cells at the margins of the regions of atrophy [19]. Alternatively, early AMD can progress

to wet AMD, characterized by choroidal neovascularization (CNV), where neovascular tissues

infiltrate the retina. Infiltration of these tissues can interfere with the RPE-photoreceptor inter-

face leading to scarring and may leak fluid into the retina, causing further degeneration and

transdifferentiation of RPE cells [20–22].

Although the exact mechanisms of AMD progression are under debate, chronic exposure

to cytotoxic elements such as drusen, lipofuscin, and reactive oxygen species (ROS) can pro-

mote RPE cell death and increase the risk of AMD [23–27]. In the last decades, numerous cell-

based wound healing assays, via chemical or mechanical ablation, have been developed to dis-

sect the underlying mechanisms of RPE cell wound response and AMD pathogenesis [28–32].

Nevertheless, it is a technical challenge to create a chronic and localized wounding situation to

recapitulate the progressive RPE degeneration seen in the macular region of AMD eyes. To

overcome the challenge, we used the electric cell-substrate impedance sensing (ECIS) system

to precisely and repetitively wound the same area on a differentiated human fetal RPE mono-

layer. Chronic wounding of the RPE monolayer using this system leads to significant changes

in RPE morphology, behavior, and gene expression that are distinct from changes that occur

after an acute wound.

Materials and methods

Cell culture

Human fetal RPE cells were provided by Dean Bok (University of California, Los Angeles).

Fetal cells were isolated from deidentified tissue that was obtained with written informed con-

sent by a third party tissue repository (Advanced Bioscience Resources, Alameda, CA, USA)

and cultured according to previously described methods [28, 33, 34]. Cells were seeded at

1x105 cells/cm2 and allowed to differentiate for 32–40 days in a base medium described by

Maminishkis [35]. ECIS 96-well 1E+ cultureware (Applied BioPhysics) were coated with fil-

tered 10 mM cysteine hydrochloride (Fisher Scientific) in nanopure water for 10 minutes at
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room temperature. The plate was rinsed twice with nanopure water before coating with 20 ug/

ml laminin (ThermoFisher Scientific Inc.) overnight at 4˚C. Wounds were delivered using

ECIS Zθ (Applied BioPhysics) with a wound current of 3000 μA, frequency of 60000Hz, and a

wound time of 15 sec. Dead cells were gently removed from electrode approximately two

hours post wounding by pipetting. Palbociclib (40 μM, Selleckchem); Thiazovivin (2 μM, Cay-

man Chemical); human recombinant TGFβ-2 (50 ng/ml, PeproTech); RepSox (50 nM, Cay-

man Chemical); 5-ethynyl-2’-deoxyuridine (EdU, 30 μM, Invitrogen); DKK-1 (200 ng/ml,

R&D Systems); Wnt3a (200 ng/ml, R&D Systems) was supplemented to cultures on a daily

basis.

Characterization of cells

EdU labeling and immunocytochemistry. Proliferating cells were labeled using medium

supplemented with 30 μM 5-ethynyl-2´-deoxyuridine (EdU) for 24–48 hours. Cells were fixed

with 4% paraformaldehyde for 10–15 minutes. Specimens were incubated with 5% normal

donkey serum at 4˚C overnight. Click-iT1 Plus EdU reactions were conducted following the

manufacturer’s instructions (Invitrogen). Primary antibodies; Alexa Fluor 594 mouse anti-

ZO-1 (7.5 μg/ml, Life Technologies), Anti-Fas clone CH11 (500 ng/ml, Sigma) were incubated

overnight at 4˚C. Nuclei were stained using Hoechst 33342 (1:2000, Thermo Scientific) for 10

minutes at room temperature. ECIS wells were excised from the dish and mounded on CellVis

#1.5H 12-well dishes using ProLong Gold antifade mountant (Thermo Fisher). Images were

obtained using a Cytation5 (BioTek) and processed using the Gen3.0 software to produce

movies. Images taken to assess cell density and morphology were taken using auto exposure.

Transcriptomic analysis. Cells on and in the region adjacent to the 350 μm diameter elec-

trodes were manually dissected using a 1.5 mm biopsy punch (Integra LifeSciences). RNA was

harvested using NucleoSpin RNA XS Kit (Macherey-Nagel) and converted into cDNA using

SMART-Seq v4 Ultra Low Input RNA Kit (Clontech Laboratories). DNA libraries were pre-

pared with Ion Xpress™ Plus gDNA Fragment Library Preparation kit and sequenced by an

Ion Proton next-generation sequencer (Thermo Fisher Scientific Inc.). The resulting

sequences were aligned to the human transcriptome and genome (hg38) using a two-stage

alignment pipeline employing STAR and TMAP read aligners [36]. The number of reads per

protein-coding mRNA was determined using Partek Genomics Suite (Partek Inc.), and the

dataset was normalized using the trimmed mean of the M-values method [37]. Genes with

reads per million (RPM)�1 in three or more samples were selected (S1 Table), and differential

expression and statistical analysis were carried out using the classic implementation of edgeR

(S2 Table) [38]. The RNA-Seq data and methods can be accessed through the Gene Expression

Omnibus (GEO: GSE146884).

Results

Differentiated human fetal RPE cells mend lesions within 24-hours

The integrity of the RPE monolayer along with the endothelial cells of Bruch’s membrane are

required to maintain the blood-retinal barrier [2]. To investigate the wound-healing capacity

of differentiated human RPE, electric cell-substrate impedance sensing (ECIS) Zθ technology

was utilized [39–41]. In this system, cells are grown on gold electrodes located in the bottom of

an ECIS cultureware plate where the electrical impedance imposed by those cells is monitored

and recorded by the application of a low voltage alternating current. Discrete paddle-shaped

wounds in the monolayer can be created by delivering high current-high frequency pulses for

several seconds, killing the cells overlaying and directly adjacent to the electrodes (Fig 1A).
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The kinetics of wound repair can be measured by monitoring the impedance as a function of

time [42, 43].

To determine the kinetics of repair in the differentiated RPE after a single acute wound,

human fetal RPE cells plated at high density and cultured for 32 days to allow for the develop-

ment of cuboidal morphology and pigmentation. Differentiated RPE cells maintained an

impedance at 5000–6000 Ω at a frequency of 16,000 Hz as a confluent monolayer. Immediately

following the delivery of a high current electrical pulse, the impedance dropped to a level com-

parable to an empty electrode (~2000 Ω; Fig 1B). A lag phase was apparent after the delivery of

the pulse, where the impedance of an empty electrode was maintained. Using time-lapse imag-

ing, we determined that the lag phase consisted of two events. In the first 300 minutes,

bystander cells were maintained in a latent condition, where no obvious movement was

observed (Fig 1A), followed by a vigorous ingrowth of bystander cells. However, it took

approximately 200 minutes for RPE cells to migrate from the perimeter of the lesion to the

margin of the electrode, where changes in impedance can be detected. Notably, the majority of

the RPE migrated as a sheet, while cells distal to the lesion remained stationary (S1 Movie).

Following the lag phase, the impedance steadily increased to a level comparable to the

unwounded monolayer within 24 hours, which was confirmed by the continuous ingrowth of

RPE cells using time-lapse imaging.

Repetitive wounding accelerates the rate of wound closure. One advantage of the ECIS

system is the capability of delivering distinct and repetitive lesions to the same geographic loca-

tion in a monolayer of cells while retaining the integrity of the basement membrane (S1 Fig).

This feature allows for the development of a reliable method that can model chronically

wounded RPE without hindering wound healing by physical damage of the extracellular

matrix. Electrical pulses were delivered to create discrete wounds in the RPE cell monolayer

every 24 hours for ten consecutive days in order to evaluate the capacity of differentiated

human RPE to repair during a state of chronic wounding. We monitored changes in imped-

ance between each daily treatment as the bystander RPE cells repaired the damaged areas. The

time for cells to achieve a 10% and 90% level of recovery after each treatment were used as cri-

teria to assess the rate of RPE wound healing. After the first treatment, it took an average of

7.91 hours to regain 10% of the lost impedance and approximately 19.55 hours total to reach

90% recovery (Fig 1C). Interestingly, the amount of time to repair wound closure decreased

with repetitive treatments (Fig 1B). By the tenth wound treatment, the cells regained 10% and

90% of the maximum impedance after approximately 6.69 hours (11.6% reduction) and 14.48

hours total (25.9% reduction), respectively (Fig 1C).

Repetitive wounding promotes RPE proliferation but leads to hypotrophy of the mono-

layer. To investigate whether cell proliferation is involved in the repair process of a wounded

differentiated human RPE monolayer, EdU (5-ethynyl-2´-deoxyuridine) was added to label

the proliferating population of cells after the last wound treatment. While an intact RPE mono-

layer maintained a quiescent state (Fig 2A), both EdU-positive and EdU–negative cells were

observed over the round 350 μm area of the lesion, indicating RPE wound healing involves

both cell proliferation and migration. The number of proliferating cells increased by nearly

2-fold in the chronic wounding condition, where cultures were wounded approximately every

Fig 1. RPE cell wound repair kinetics. (A) Time-lapse phase contrast images of RPE cells wound healing. Red-dash lines indicate the original lesion border.

Images were taken every 100 minutes post-wounding. Scale bar is 400 μm. (B) Real-time impedance recording of RPE wound healing. A rapid reduction in

impedance occurs after delivery of a high current-high frequency electrical pulse (3 mA, 60 kHz, 15 sec.; arrow) to the monolayer. Over time, the impedance

gradually recovers to a level similar to that of an intact monolayer. Impedance was plotted after the first wound for acute wound treatments (red) and after the

tenth wound for chronic wound treatments (purple). Unwounded wells served as controls (blue). Trace is the average of four biological replicates. (C) Time for

bystander cells to recover 10% and 90% of the maximum impedance showing a time reduction trend after daily treatments (mean ± SD, n = 4).

https://doi.org/10.1371/journal.pone.0236298.g001
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24 hours for ten days, compared to cells in the acute wounding condition, which were

wounded only once (Fig 2B). Notably, the EdU-positive population was typically restricted to

the enclosed wound area, whereas most of the cells outside of the lesion remained in a quies-

cent state. However, even after chronic wounding, cell proliferation was not sustained. The

Fig 2. RPE cells fail to regenerate fully following repeated wounding. (A) Immunostaining of unwounded (control),

acutely wounded, and chronically wounded RPE cells 48-hours after the last wound. Gold electrodes are located on the left

side of each panel. Nuclei are labeled with Hoechst (blue); proliferating cells are labeled using EdU (red); cell-cell junctions

are detected by ZO-1 staining (green). EdU was supplemented to the media for 48 hours post wounding. Both EdU-positive

and -negative nuclei are observed in the enclosed wound, indicating that both proliferation and migration are involved in the

wound closure process. Enlarged RPE cells seen after repetitive wounding are indicated by red arrows. Images were taken

with auto exposure. Scale bar is 200 μm. (B) The percentage of EdU-positive cells on electrodes (mean ± SD, n = 4). (C) The

numbers of cells on the electrode relative to the control (mean ± SD, n = 4, � indicates p-value<0.01, see S3 Table).

https://doi.org/10.1371/journal.pone.0236298.g002
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proliferative population decreased to less than 1% of the total population in both acute and

chronic wounding states by eight days after the last wound treatment (Fig 2B).

Although RPE monolayers appear to use both proliferation and migration to repair dam-

aged areas, the RPE cells are incapable of restoring the original density after repetitive wound-

ing. Two days after an acute wound treatment, the number of cells on the electrode was

restored to roughly 85% of the control density (Fig 2C). After eight days of recovery, the cell

density increased to a similar number as the intact control. However, after repetitive wound-

ing, the regenerative ability appeared to decline as the cell number only restored to 75% of the

control even after eight days of recovery. The decline in cell density resulted in enlarged RPE

cells over the lesioned area, which was observed using anti-ZO-1 immunostaining (red arrows

in Fig 2A).

Inhibition of the cell cycle does not affect the rate of RPE cell wound closure. To assess

whether cell proliferation is an essential component of RPE wound closure, we blocked prolif-

eration after wounding using palbociclib, a cyclin-dependent (CDK) 4 and CDK6 inhibitor.

Supplementation of palbociclib significantly decreased cell proliferation in wounded cultures

(Fig 3A and 3B) but did not affect the rate of wound closure (Fig 3D). However, there was a

significant reduction in cell density over the electrode compared to chronic wound controls

(Fig 3C). This data suggests that although initiation of the cell cycle is not required for RPE

wound closure, the loss of proliferation results in a further reduction in cell density over

lesioned areas.

Modulation of bystander RPE cell transcriptome profile following acute or chronic

wounding. Transcriptome analysis was employed in order to gain a more comprehensive

understanding of how RPE respond to acute and chronic wounding. To enrich for cells in

close proximity of the wounded area, we utilized a 1.5 mm biopsy punch (red circle in S2A

Fig). While electrodes in a single well encompass just 0.6% of the total surface area, a single

electrode encompasses 5.4% of a 1.5 mm biopsy punch, a 9-fold enrichment. Cells were har-

vested at 5-hours, 24-hours, and 8-days after the final acute or chronic wound treatment, and

transcriptome profiles were compiled using RNA-Seq. Acute wounding consisted of one

wound treatment while chronic wounding consisted of ten consecutive wounds, once every

24-hours, to determine whether repetitive wounding resulted in any prolonged misregulation

of the transcriptome. The 5-hour time point coincides with the end of the lag phase and the

onset of migration. The 24-hour sample captures the point in time shortly after wound closure.

The 8-day time point assesses the residual effects of wounding after the completion of prolifer-

ation and migration. Samples collected from adjacent, non-wounded cultures served as

controls.

As summarized in Fig 4A, roughly 2600 genes in total were differentially expressed

(FDR� 0.05 and� 2-fold change) compared to controls following either acute or chronic

wounding treatments across all time points (S4 Table). Over 1800 differentially expressed

genes (DEGs) were detected in both acute and chronic wounding conditions, while roughly

700 distinct genes remained significantly altered in acute or chronically wounded cultures

alone. A majority of the DEGs were detected 5-hours after wounding. Remarkably, the expres-

sion levels of most DEGs detected in the acutely wounded 5-hour samples were restored to lev-

els comparable to unwounded controls by 24-hours (Fig 4B). In the acute wound samples,

3.8% of the DEGs at 5-hours remained differentially expressed at 24-hours and only 0.2%

genes remained differentially expressed at all time points. In chronically wounded samples

there was less recovery of expression after the last wound; 17.6% of the DEGs at 5-hours

remained differentially expressed at 24-hours, and 1.2% of the genes remained differentially

expressed at all time points.
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Fig 3. The proliferation of RPE cells is not required for wound closure. (A) Representative images of Hoescht, EdU, and ZO-

1 labeled cell cultures two days after chronic wound treatments in the continual presence of 10 μM palbociclib. Scale bar is

200 μm. (B) Percent of EdU-positive cells 48-hours or 8-days after receiving chronic wounding treatments (mean ± SD, n = 4).

(C) Inhibition of cell proliferation by the addition of palbociclib decreases the capability of RPE cells to restore control cell

density over the electrode (mean ± SD, n = 3, � indicates p-value<0.01, see S3 Table). (D) Real-time impedance recording of

RPE wound healing after chronic wound treatment in control and palbociclib treated cells. Trace is the average of three

biological replicates.

https://doi.org/10.1371/journal.pone.0236298.g003
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After eight days of recovery, only 26 and 65 genes remained differentially expressed in the

acute and chronic wound samples, respectively. Thirteen genes remained differentially

expressed in both acute and chronic wound samples after 8-days of recovery, including pro-

teins associated with cellular structures (ACTA2, TAGLN, KRT7, IQCJ-SCHIP1), signal trans-

duction (DKK1, JUN, PRLR, RASSF3, WDR83), oxidoreduction (OGFOD2), protease activity

(PRSS12, SERPINE1), and chromatin remodeling (SETMAR). Of the common differentially

expressed genes, the upregulation of DKK1 stands out due to its role as a Wnt signaling antag-

onist, which has been shown to modulate RPE cell wound healing in a CNV model [44, 45].

However, the addition of recombinant DKK1 or Wnt3a to the culture medium did not affect

the rate of wound healing or cell density of chronically wounded RPE monolayers (S3 Fig).

Using transcriptomic analysis, we showed that bystander RPE cells can rapidly adjust tran-

scriptome profiles in response to sudden disruptions to the monolayer. Interestingly, the gene

expression profile alters when the monolayer receives chronic damage compared to acute

damage. For example, prolonged differential expression of genes is seen at 24-hours following

chronic wounding in gene ontology groups involved in positive regulation of cell migration

(GO:0030335), mitotic cell cycle (GO:0000278), and inflammatory response (GO:0006954)

compared to acute wounding (Fig 4C). This observation corresponds to results showing an

increased speed of wound closure and an increase in the proliferative population enclosing the

lesioned area (Figs 1 and 2).

Prolonged misregulation of key genes involved in RPE cell functions following chronic

wounding. To evaluate whether lesions on the monolayer affect the expression of key genes

involved in RPE cell identity and function, we investigated the expression levels of the top 100

genes which are known to decrease in expression when RPE cells lose their epithelial identity

and transdifferentiate into the mesenchymal cell fate (S5 Table) [28]. Expression levels of 81

genes were significantly altered (Benjamini & Hochberg correction, P-value<0.01 compared

to controls) 5-hours post wounding, most of which have decreased expression in both acute

and chronic wounding conditions (Fig 5A). All genes misregulated in the acute wound 5-hour

samples were restored to control levels by 24-hours, but 26 genes remained significantly

down-regulated after chronic wounding. After 8-days of recovery, expression levels of the top

100 RPE genes were not significantly different from intact control samples.

Next, we assessed the expression of genes associated with key RPE functions, including the

visual cycle, growth factors, pigmentation, and retinal development. One such critical process

includes the isomerization of all-trans retinal to 11-cis retinal, misregulation of which can jeop-

ardize the visual cycle, and lead to photoreceptor degeneration and vision loss [46]. This pro-

cess is carried out by LRAT, RPE65, and RDH proteins. Here, we found that the expression

levels of LRAT and RDH11 were significantly diminished 5-hour post wounding (Fig 5B).

RPE65 expression decreased 24-hours post wounding, but did not meet our DEG criteria.

Despite the increase in expression of LRAT and RDH11 24-hours after wounding, expression

levels of LRAT transcripts remained significantly reduced after chronic wounding, restoring to

an average of less than 70% of control levels. Considering the entire lesioned area contributes

Fig 4. Differential expression and gene ontology analysis. (A) Venn diagrams comparing the differentially expressed genes (DEG; FDR� 0.05

and� 2-fold change) at three time points following acute or chronic wound treatments. (B) Venn diagrams showing the overlap of DEGs in the acute

or chronic wounding condition alone after wounding. Chronic wounding results in prolonged misregulation of gene expression compared to acute

wounding, as seen by the increase in the number of DEGs at both 24-hours and 8-days post wounding. (C) Scatter plots of DEGs showing log2

transformed fold change (Log2FC) of acute (X-axis) or chronic (Y-axis) compared to unwounded controls at 5 hours (5H), 24 hours (24H) and 8 days

(8D) after wounding. DEGs in either acute wounding alone or chronic wounding alone are colored blue and red, respectively. DEGs in both

wounding conditions are colored green, and genes that are not significantly changed (either FDR> 0.05 or< 2-fold change) are colored grey. All

genes are differentially expressed in one or more time point. Gene ontology groups are significantly enriched based on the total number of

differentially expressed genes.

https://doi.org/10.1371/journal.pone.0236298.g004
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to just 5.4% of the total area of the biopsy punch used for RNA isolation, the decrease in

expression of LRAT suggests a broad decrease in expression levels across bystander cells; cells

responding to the wound but not directly next to the lesion.

In addition to functioning in the visual cycle, RPE cells secrete PEDF and VEGF to support

the photoreceptors and the choroid, respectively. Here, we found that the expression level of

PEDF was minimally affected following acute wounding but significantly decreased with

chronic wounding (Fig 5B). In our culture system, differentiated human fetal RPE cells express

three VEGF isoforms, A, B, and C. VEGFA is the most abundant isoform averaging 905 RPM,

VEGFB averages 125 RPM, and VEGFC is the least abundant isoform averaging 2 RPM. Previ-

ously, we have shown that VEGFA expression decreases while the expression of VEGFC
increases when RPE cells terminally differentiated into a mesenchymal cell fate [28]. Here, a

similar phenomenon was observed; expression levels of VEGFA were significantly decreased,

and VEGFC was significantly increased in the 5-hour samples. Unlike the terminal epithelial

to mesenchymal transdifferentiation seen in our previous work [28], expression levels of

VEGFA and VEGFC can be restored 24 hours after wounding in acutely and chronically

wounded RPE monolayers. VEGFB transcripts were unaffected by wounding.

Pigmentation is one of the most definitive phenotypical characteristics of RPE cells. The

pigment in RPE cells can absorb scattered light to improve visual acuity and, importantly, pro-

tect retinal cells from photo-oxidative stress [5, 47]. MITF mediates the pigmentation of RPE

and can also transactivate the expression of TYR, TYRP1, and DCT, essential enzymes for

melanogenesis. Downregulation of MITF, TYRP1, and DCT was observed 5-hours after

wounding while the expression of TYR was not affected. The expression levels of MITF and

TYRP1 restored to control levels 24 hours after wounding, but DCT remained downregulated

in the chronic wounding condition (Fig 5B). In addition to MITF, the misregulation of other

transcription factors associated with retinal development was also detected. Expression levels

of SOX9 and CRX decreased 5-hours after wounding and restored to control levels after 24

hours. After a single wound, the expression levels of RAX increased 5-hours and 24-hours after

wounding but restored to control levels after 8-days. Prolonged upregulation of RAX was seen

in the chronically wounded samples after 8-days.

Together, these results indicate that lesions on the RPE monolayer can lead to dysregulation

of genes key to RPE specification and function in bystander RPE cells. Expression levels of a

majority of the dysregulated genes restore by 24 hours in the acute wounding condition. How-

ever, many genes failed to fully recover after 24 hours in the chronic wounding condition,

indicating that the ability of bystander RPE cells to regenerate diminishes following repetitive

wounding. Due to the importance of RPE cells in maintaining the subretinal environment,

prolonged dysregulation of RPE functions can potentially lead to RPE and photoreceptor

degeneration.

Association of RPE wound response with AMD pathogenesis. In addition to genes asso-

ciated with RPE cell specification and function, several DEGs are important due to their poten-

tial roles in AMD pathogenesis, particularly genes which play a role in inflammation. In this

study, we observed an increase of CCL2, IL-18, and FAS expression in wounded samples

compared to unwounded controls (Fig 6A). Expression of both CCL2 and IL-18 increased

5-hours after acute or chronic wounding and restored to roughly normal levels 8-days post

wounding.

Fig 5. Systemic misregulation of RPE genes following wounding. (A) Violin plot showing Log2FC of the top 100 RPE genes in acutely wounded (blue) or

chronically wounded (red) RPE cells (�� = p-value<0.0001). (B) Bar graphs of select RPE genes showing Log2FC of acute or chronic wounding at 5H, 24H,

and 8D compared to unwounded controls (mean ± SD, n = 3,� indicates p-value<0.01, see S3 Table).

https://doi.org/10.1371/journal.pone.0236298.g005
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Unlike CCL2 and IL-18, which were expressed at detectible levels even in unwounded RPE,

FAS transcripts were absent or in a non-detectable range in intact controls. Five-hours post

wounding FAS was detected in both acute and chronically wounded samples (Fig 6A). In the

acute wound cultures, the expression of FAS was reduced by 24 hours and non-detectable after

8-days. In contrast, chronically wounded RPE cells maintained upregulation of FAS after

8-days of recovery. Despite the confirmation of FAS expression by immunostaining, we did

not observe a clear apoptotic effect on the bystander RPE cells using FAS activating IgM, as the

impedance recovery profile and the cell density were comparable to unwounded controls (S3

Fig). Perhaps persistent upregulation of BIRC5 (also known as Survivin), a member of the

inhibitors of apoptosis proteins (IAPs), in the chronically wounded cells may protect bystander

cells from FAS mediated cell death (Fig 6A).

Finally, we used Fisher’s exact test to investigate whether using ECIS for acutely or chroni-

cally wounded RPE displays significant transcriptomic changes similar to transcriptomic pro-

files of AMD eyes [48]. Due to differences in the methodology, only genes expressed by in
vitro RPE cells were considered amongst those previously detected by DNA microarray in the

RPE-choroid AMD samples (S6 Table). As shown in Fig 6B, there was no significant correla-

tion between in vitro RPE wounding and early AMD. Interestingly, however, a significant

over-representation of genes associated with both types of advanced AMD was observed in

both acute and chronically wounded samples, where chronically wounded RPE monolayers

exhibited a higher correlation with both types of advanced AMD (Fig 6B).

Discussion

In this study, we investigated the wound healing response of acutely and chronically wounded

differentiated human RPE monolayers. We report that differentiated human RPE cells repair

Fig 6. Correlation between RPE cell wounding and AMD. (A) Expression levels of selected genes. Grey line indicates the expression level of the unwounded control

(mean ± SD, n = 3, � indicates p-value<0.01, see S3 Table). (B) Bar graph indicates the percentage of early AMD, CNV, and GA associated genes, whose expression levels

are significantly differentially expressed (Benjamini & Hochberg correction, p-value<0.01) following acute (blue) or chronic (red) wounding. An asterisk indicates

significant over-representation of CNV and GA-associated genes in wounded samples (Fisher’s exact test, p-value<0.01).

https://doi.org/10.1371/journal.pone.0236298.g006

PLOS ONE An in vitro model of chronic wounding and its implication for age-related macular degeneration

PLOS ONE | https://doi.org/10.1371/journal.pone.0236298 July 23, 2020 13 / 22

https://doi.org/10.1371/journal.pone.0236298.g006
https://doi.org/10.1371/journal.pone.0236298


lesions introduced by high current electrical pulses using the ECIS system and can repair

repetitively induced wounds. In response to a lesion on the monolayer, bystander RPE cells

migrate and proliferate to repair the wound; whereas, cells distal to the lesion remain quiescent

(Fig 2A). Compared to an acutely wounded monolayer, repetitive wounding accelerates the

speed of wound closure and increases the proliferative population in conjunction with pro-

longing the differential expression of genes related to cell migration, cell cycle, RPE function

and, inflammation.

Previous reports suggest the density of RPE in the macula to be 4,960 ± 1,040 cells/mm2,

with a loss rate of 0.54% per year [49]. In our system, the density of the unwounded controls

fell within previous reports, while chronic wounding resulted in a reduced cell density of

~3,000 RPE cells/mm2 (S2D and S2E Fig). Despite an increase in the proliferative cell popula-

tion following chronic wounding, chronically damaged RPE monolayers restore to just 75% of

control density, resulting in enlarged cells over the lesion (Fig 2C). This seemingly conflicting

result is likely due to the repetitive ablation of proliferative cells on the lesioned area and the

lack of proliferation in the region distal to the lesion. It is possible that the RPE cells enlarge in

the periphery, similar to enlarged cells seen on the electrode to compensate for cell loss while

maintaining the coherence of the monolayer (S2 Fig).

Many features seen in RPE monolayers in a state of chronic wounding are strikingly similar

to features seen in AMD. For instance, enlarged RPE has been reported previously in eyes with

AMD, particularly near drusen [7]. The accumulation of drusen is the clinical hallmark of

AMD, and it has been proposed that the presence of inflammation-associated proteins in dru-

sen, such as complement factors, can lead to chronic immune responses in the subretinal

space leading to RPE degeneration and AMD [50–53]. Using the ECIS system, we observed an

increase in RPE cell size only after chronic wounding. The generation of lesions in an RPE

monolayer also elicited an inflammatory response. Interestingly, the chronic wounding state

showed an even more prolonged misregulation of inflammatory genes compared to the acute

wounding state (Fig 4C).

In addition to the inflammatory components of drusen, mononuclear phagocytes (MPs)

has been observed in both forms of advanced AMD, further supporting the idea that that

chronic low-grade inflammation may play a role in the progression of AMD [54–56]. MP acti-

vation has been shown to diminish the expression of genes critical for RPE function and can

induce cell death [57, 58]. CCL2 is a chemoattractant for MPs, recruiting and activating MPs

to sites of CCL2 secretion. The upregulation of CCL2 expression can lead to the accumulation

of MPs in the subretinal space, and CCL2 treated MPs can stimulate RPE cell apoptosis [59–

62]. We observed a drastic upregulation of CCL2 expression following both acute and chronic

wounding (Fig 6A).

Apoptosis has been reported to contribute to AMD pathogenesis, particularly for RPE near

drusen or GA lesions [63]. The FAS dependent apoptosis pathway is initiated by the engage-

ment of FAS (receptor) with FASL (ligand), inducing the formation of the death-inducing sig-

naling complex (DISC), activation of the caspase cascade, and ultimately causes DNA

fragmentation [64]. Additionally, apoptosis has also been shown to be triggered in RPE cells

via the IL-18 and FAS-mediated pathway, triggered by the misregulation of RNA processing

[65, 66]. We found that the RPE cell response to acute or chronic wounding results in a signifi-

cant increase in both IL-18 and FAS expression (Fig 6A). However, expression of FASL and

the components of the IL-18 receptor, IL18R1 and IL18RAP, were in the low to non-detectable

range. The expression of these three components are generally expressed on immune cells

such as MPs, T cells, B cells, natural killer cells, and has been reported in RPE in vivo [67–71].

Wounding of the RPE monolayer also caused a transient misregulation of genes key to the

visual cycle, melanogenesis, growth factor expression, and RPE cell specification. Even though
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bystander RPE can restore the expression levels of these genes after 8-days of repair, the capac-

ity to recover diminishes following chronic wounding. Because of the importance of RPE cells

in the maintenance of the sub-retinal environment, prolonged dysregulation of bystander RPE

after chronic wounding may lead to dysfunction of the RPE monolayer leading to photorecep-

tor death and loss of vision [7, 19, 72].

When investigating the differentially expressed genes from the acute and chronic wounding

conditions, we found a significant overrepresentation of genes that have been shown previ-

ously to be differentially expressed in late AMD eyes [48]. Similar to the RPE genes, expression

levels of most of the AMD associated genes are restored after 8-days of recovery. However, a

greater number of AMD associated genes were differentially expressed in the chronically

wounded samples, and the extent of recovery diminished following chronic wounding.

Despite the similarity of several features of chronically wounded RPE cells and AMD, there

is a fundamental difference between the model presented in this study and the advanced stages

of AMD. While we observed a productive wound healing process using ECIS, even while using

a cell-cycle inhibitor, a productive wound healing process is seemingly absent in advanced

stages of the disease. Tissue regeneration requires the proliferation of the progenitor or

bystander cells, followed by differentiation of the newly produced cells. RPE cells can reenter

the cell cycle in response to growth factor stimulations such as PDGF, bFGF, TGFβ, and TNFα
[73–77]. In vitro, primary adult and fetal human RPE cells can redifferentiate into a functional

monolayer with a minimal amount of expansion. However, extensive passaging or low-density

plating can direct RPE cells toward terminal mesenchymal transdifferentiation and give rise to

fibrotic tissues [28]. Observations of RPE-derived fibrotic membranes in wet AMD eyes sug-

gest that exposure to serum components may promote RPE hyperproliferation and transdiffer-

entiation. In this study, although >50% of cells on the electrode were in a proliferative state

after chronic wounding, we did not observe a clear sign of terminal mesenchymal transdiffer-

entiation. This result is likely due to the magnitude of lesions created by the ECIS system being

relatively small; therefore, an extensive propagation is not required to mend the gap.

In contrast, in GA, gross RPE proliferation and transdifferentiation are not observed. In

GA, the decline in the nutrition supply due to degeneration of the choroidal capillaries

together with enhanced cell apoptosis and chronic inflammation may prevent RPE regenera-

tion. The decline in VEGF-A expression and the increase in the CCL2, IL-18, and FAS expres-

sion levels in chronically wounded bystander RPE suggest that lesions in the RPE monolayer

may lead to the degeneration of choroidal capillaries and promote an inflammatory response,

which can lead to further degeneration of RPE cells.

Using the ECIS system, we were able to generate an in vitro system to model a chronic

wound state in a short amount of time with features distinct from that of an acute wounding

state. However, there are limitations of this system which do not fully recapitulate the progres-

sion of AMD in vivo. For instance, high current is used to induce lesions by causing cell death

in RPE cells overlaying the electrodes. Although this mechanism of RPE cell death is not physi-

ologically relevant to AMD, we believe the study of the bystander wound response has poten-

tial disease-related implications, as we see several similarities between known features of AMD

and chronically wounded RPE.

Another limitation of this system is the lack of underlying choroid. While the RPE mono-

layer maintains the heath of the overlaying RPE, the underlying choroid plays an equally

important role in maintaining the health of the RPE by providing nutrients and removing

waste [78]. Degeneration of the choroid, specifically the choriocapillaris, often occurs during

the early stages of AMD, although the exact timing of events is still under debate [79]. Perhaps

future work combining RPE, choroidal epithelial cells, photoreceptor outer segments, and one

of the many types of ECIS arrays may provide more insight into how these interconnected cell
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types change during wound repair. While our system does not recapitulate some aspects of an

intact retina, in vitro models, such as this, are less expensive than in vivo experiments, quicker

to perform, and can be efficiently scaled up.

Using ECIS as a platform for chronic wounding of RPE cells may be ideal for screening

therapeutics that may enhance the ability of RPE cells to wound repair over time, which could

potentially help increase the reparative capacity of RPE. In addition to the experiments pre-

sented here, this platform allows for the addition of other risk factors known to influence the

onset of AMD, such as age, oxidative stress, inflammation, and mitochondrial health [80, 81].

Although we do not fully understand the pathology that drives AMD progression, this system

may lead to further insights into these mechanisms. Further investigations combining chronic

wounding with additional AMD risk factors may be key in further elucidating mechanisms

that influence RPE wound repair in advanced stages of AMD.

Supporting information

S1 Movie. Real-time imaging of RPE cell wound repair. Wounding was generated using the

ECIS system. Phase contrast images were taken every 30-minutes using the Cytation5 (Bio-

Tek). The video was generated using Gen3.00 software. Scale bar represents 300 μM.

(MP4)

S1 Fig. Wounding ECIS electrodes does not affect human fetal RPE attachment. (A) ECIS

8W10E cultureware was coated with laminin and wells were wounded once or ten times.

Immediately following last wound treatment, human fetal RPE cells were plated (arrow) at

80,000/cm2 to asses ability of RPE to attach to wounded electrodes. Impedance at 64,000Hz

was normalized to the 1.4-hour time point, when cells were plated. Unwounded wells and a

single empty well were used as controls. No significant difference in impedance between

unwounded, and 1 or 10 wounds was seen, suggesting no change in the ability of RPE to attach

to electrodes post wounding (n = 4).

(EPS)

S2 Fig. Change in RPE cell size and morphology with acute or chronic wounding. (A) Single

96-well whole mount using ZO-1 antibody to visualize cell morphology. Reflections of gold

electrodes are visible. Red dotted circles indicate punch size used for RNA extraction. Solid red

boxes indicate locations over the wound (w) or periphery (p). Scale bar is 1 mm (B) Morphol-

ogy of unwounded RPE control cells over the electrode (w) or periphery. Scale bar is 200 μM.

(C) Morphology of RPE cells over the wounded area (w) or periphery (p) at 2-days or 8-days

post wounding in acute or chronic wounding conditions. Images are to the same scale as (B).

(D) Cell density per mm2, 2-days after acute or chronic wounding. Data was taken from Fig

2C and normalized to the area over the electrode. (E) Cell density per mm2, 8-days after acute

or chronic wounding. Data was taken from Fig 2C and normalized to the area over the elec-

trode.

(EPS)

S3 Fig. Minimal effect of Wnt3a or DKK-1 on RPE cell wound repair. (A) Real-time imped-

ance recording of RPE cell wound healing supplemented with DKK-1 (200 ng/ml) or Wnt3a

(200 ng/ml). The recovery of impedance is not affected by supplementation with either DKK1

or Wnt3a. Each trace is an average of 2 biological replicates. (B) Cell count over the electrode

based on Hoescht staining compared to unwounded samples (mean ± SD, n = 3).

(EPS)
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S4 Fig. Minimal effect of activating anti-FAS antibody on RPE cell wound repair. (A)

Immunostaining of cells expressing FAS after chronic wounding. (B) Real-time impedance

recording of RPE cell wound healing supplemented with 500 ng anti-FAS activating antibody.

Each trace is an average of 2 biological replicates. (C) Cell count over the electrode based on

Hoescht staining relative to unwounded samples (mean ± SD, n = 2).

(EPS)

S1 Table. Normalized RPM. The dataset was normalized using the trimmed mean of the M-

values method. Genes with reads per million� 1 in three or more samples were selected for

further investigation.

(XLSX)

S2 Table. Changes in gene expression after wounding. Differential expression and statistical

analysis were carried out using edgeR. 24-hour unwounded samples were used as control for

both 5-hour and 24-hour wounded samples. 8-day unwounded samples were used as the con-

trol for 8-day wounded samples.

(XLSX)

S3 Table. P-values. P-values for Figs 2B and 3C were calculated using a two-tailed homosce-

dastic student’s t-test. P-values for Figs 5B and 6A were calculated using edgeR compared to

unwounded controls.

(XLSX)

S4 Table. Differentially expressed genes after wounding. Genes with FDR� 0.05 and�

2-fold change compared to unwounded controls.

(XLSX)

S5 Table. Top 100 RPE genes. Expression levels of the top 100 RPE genes known to decrease

in expression after RPE cells undergo epithelial-to-mesenchymal transition.

(XLSX)

S6 Table. Gene list used in profiles of AMD eyes. Genes are categorized as Early AMD, GA,

or CNV and whether the expression was upregulated or downregulated in the original AMD

eye profiles by Newman et al.
(XLSX)
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