112 research outputs found

    Long-term ecological legacies in western Amazonia

    Get PDF
    M.B.B would like to acknowledge funding from the National Science Foundation (grant nos. EAR1338694 and BCS0926973), the Belmont Forum, and the National Aeronautics and Space Administration (grant no. NNX14AD31G). C.N.H.M would like to acknowledge funding from the European Research Council (ERC 2019 StG 853394). C.N.H.M and M.F.R would like to acknowledge funding from the Netherlands Organisation for Scientific Research (ALWOP.322). S.N.H, M.P, and Jo.V performed this research as a part of the BSc research program of the Institute for Biodiversity and Ecosystem Dynamics at the University of Amsterdam.1. Modifications of Amazonian forests by pre‐Columbian peoples are thought to have left ecological legacies that have persisted to the modern day. Most Amazonian palaeoecological records do not, however, provide the required temporal resolution to document the nuanced changes of pre‐Columbian disturbance or post‐disturbance succession and recovery, making it difficult to detect any direct, or indirect, ecological legacies on tree species. 2. Here, we investigate the fossil pollen, phytolith and charcoal history of Lake Kumpaka, Ecuador, during the last 2,415 years in c. 3–50 year time intervals to assess ecological legacies resulting from pre‐Columbian forest modification, disturbance, cultivation and fire usage. 3. Two cycles of pre‐Columbian cultivation (one including slash‐and‐burn cultivation, the other including slash‐and‐mulch cultivation) were documented in the record around 2150–1430 cal. year BP and 1250–680 cal. year BP, with following post‐disturbance succession dynamics. Modern disturbance was documented after c. 10 cal. year BP. The modern disturbance produced a plant composition unlike those of the two past disturbances, as fire frequencies reached their peak in the 2,415‐year record. The disturbance periods varied in intensity and duration, while the overturn of taxa following a disturbance lasted for hundreds of years. The recovery periods following pre‐Columbian disturbance shared some similar patterns of early succession, but the longer‐term recovery patterns differed. 4. Synthesis. The trajectories of change after a cessation of cultivation can be anticipated to differ depending on the intensity, scale, duration and manner of the past disturbance. In the Kumpaka record, no evidence of persistent enrichment or depletion of intentionally altered taxa (i.e. direct legacy effects) was found but indirect legacy effects, however, were documented and have persisted to the modern day. These findings highlight the strengths of using empirical data to reconstruct past change rather than relying solely on modern plant populations to infer past human management and ecological legacies, and challenge some of the current hypotheses involving the persistence of pre‐Columbian legacies on modern plant populations.Publisher PDFPeer reviewe

    Bulk Scalar Stabilization of the Radion without Metric Back-Reaction in the Randall-Sundrum Model

    Full text link
    Generalizations of the Randall-Sundrum model containing a bulk scalar field Ί\Phi interacting with the curvature RR through the general coupling Rf(Ί)R f(\Phi) are considered. We derive the general form of the effective 4D potential for the spin-zero fields and show that in the mass matrix the radion mixes with the Kaluza-Klein modes of the bulk scalar fluctuations. We demonstrate that it is possible to choose a non-trivial background form Ί0(y)\Phi_0(y) (where yy is the extra dimension coordinate) for the bulk scalar field such that the exact Randall-Sundrum metric is preserved (i.e. such that there is no back-reaction). We compute the mass matrix for the radion and the KK modes of the excitations of the bulk scalar relative to the background configuration Ί0(y)\Phi_0(y) and find that the resulting mass matrix implies a non-zero value for the mass of the radion (identified as the state with the lowest eigenvalue of the scalar mass matrix). We find that this mass is suppressed relative to the Planck scale by the standard warp factor needed to explain the hierarchy puzzle, implying that a mass \sim 1\tev is a natural order of magnitude for the radion mass. The general considerations are illustrated in the case of a model containing an RΊ2R\Phi^2 interaction term.Comment: 22 pages, 3 figure

    A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field

    Get PDF
    A Higgsless model for strong, electro-weak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC where C is the local conformal symmetry group. The natural minimal conformally invariant form of total lagrangian is postulated. It contains all Standard Model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions we can eliminate all four real components of the Higgs doublet in this model. However the masses of vector mesons, leptons and quarks are automatically generated and are given by the same formulas as in the conventional Standard Model. The gravitational sector is analyzed and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions. No figures.Comment: 25 pages, preprin

    Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing

    Full text link
    A simple model of the neutrino mixing is considered, which contains only one right-handed neutrino field, coupled via the mass term to the three usual left-handed fields. This is a simplest model that allows for three-flavour neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9

    On the role of power expansions in quantum field theory

    Get PDF
    Methods of summation of power series relevant to applications in quantum theory are reviewed, with particular attention to expansions in powers of the coupling constant and in inverse powers of an energy variable. Alternatives to the Borel summation method are considered and their relevance to different physical situations is discussed. Emphasis is placed on quantum chromodynamics. Applications of the renormalon language to perturbation expansions (resummation of bubble chains) in various QCD processes are reported and the importance of observing the full renormalization-group invariance in predicting observables is emphasized. News in applications of the Borel-plane formalism to phenomenology are conveyed. The properties of the operator-product expansion along different rays in the complex plane are examined and the problem is studied how the remainder after subtraction of the first nn terms depends on the distance from euclidean region. Estimates of the remainder are obtained and their strong dependence on the nature of the discontinuity along the cut is shown. Relevance of this subject to calculations of various QCD effects is discussed.Comment: 50 pages, Latex, 1 Postscript figur

    The Determination of alpha_s from Tau Decays Revisited

    Full text link
    We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau hadronic spectral moments in light of (1) the recent calculation of the fourth-order perturbative coefficient K_4 in the expansion of the Adler function, (2) new precision measurements from BABAR of e+e- annihilation cross sections, which decrease the uncertainty in the separation of vector and axial-vector spectral functions, and (3) improved results from BABAR and Belle on tau branching fractions involving kaons. We estimate that the fourth-order perturbative prediction reduces the theoretical uncertainty, introduced by the truncation of the series, by 20% with respect to earlier determinations. We discuss to some detail the perturbative prediction and show that the effect of the incomplete knowledge of the series is reduced by using the so-called contour-improved calculation, as opposed to fixed-order perturbation theory which manifests convergence problems. The corresponding theoretical uncertainties are studied at the tau and Z mass scales. Nonperturbative contributions extracted from the most inclusive fit are small, in agreement with earlier determinations. Systematic effects from quark-hadron duality violation are estimated with simple models and found to be within the quoted systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007, where the first error is experimental and the second theoretical. After evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005, where the errors are respectively experimental, theoretical and due to the evolution. The result is in agreement with the corresponding NNNLO value derived from essentially the Z width in the global electroweak fit. The alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure

    Asymptotic Improvement of Resummation and Perturbative Predictions in Quantum Field Theory

    Full text link
    The improvement of resummation algorithms for divergent perturbative expansions in quantum field theory by asymptotic information about perturbative coefficients is investigated. Various asymptotically optimized resummation prescriptions are considered. The improvement of perturbative predictions beyond the reexpansion of rational approximants is discussed.Comment: 21 pages, LaTeX, 3 tables; title shortened; typographical errors corrected; minor changes of style; 2 references adde

    Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    Get PDF
    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site or at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C : 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball–Berry stomatal conductance slope (mbb) at Wind River aligned with findings from recent CLM experiments at sites characterized by the same plant functional type (needleleaf evergreen temperate forest), despite significant differences in stand composition and age and climatology, suggesting that CLM could benefit from a revised mbb value of 6, rather than the default value of 9, for this plant functional type. Conversely, Wind River required a unique calibration of the hydrology submodel to simulate soil moisture, suggesting that the default hydrology has a more limited applicability. This study demonstrates that carbon isotope data can be used to constrain stomatal conductance and intrinsic water use efficiency in CLM, as an alternative to eddy covariance flux measurements. It also demonstrates that carbon isotopes can expose structural weaknesses in the model and provide a key constraint that may guide future model development
    • 

    corecore