85 research outputs found

    Estimating photometric redshifts with artificial neural networks

    Get PDF
    A new approach to estimating photometric redshifts - using Artificial Neural Networks (ANNs) - is investigated. Unlike the standard template-fitting photometric redshift technique, a large spectroscopically-identified training set is required but, where one is available, ANNs produce photometric redshift accuracies at least as good as and often better than the template-fitting method. The Bayesian priors on the underlying redshift distribution are automatically taken into account. Furthermore, inputs other than galaxy colours - such as morphology, angular size and surface brightness - may be easily incorporated, and their utility assessed. Different ANN architectures are tested on a semi-analytic model galaxy catalogue and the results are compared with the template-fitting method. Finally the method is tested on a sample of ~ 20000 galaxies from the Sloan Digital Sky Survey. The r.m.s. redshift error in the range z < 0.35 is ~ 0.021.Comment: Submitted to MNRAS, 9 pages, 9 figures, substantial improvements to paper structur

    Factors that influence participation in physical activity for anxiety or depression: a synthesis of qualitative evidence

    Get PDF
    This is a protocol for a Cochrane Review (Qualitative). The objectives are as follows:. Main objective: To identify the factors that create barriers or facilitate physical activity for people with a diagnosis of anxiety or depression from the perspectives of service users, carers, service providers and practitioners to help inform the design and implementation of interventions that promote physical activity. The overall aim of this review is to identify, appraise, and synthesise qualitative research evidence on the barriers and facilitators to engaging in physical activity in general lifestyle settings or as part of an intervention designed to increase physical activity for people with anxiety and depression. This will allow us to identify factors that create barriers and facilitators of physical activity in this population to inform the development, design, and implementation of future interventions. We will also integrate the findings from the QES with the two associated effectiveness reviews (Cooney 2014; Larun 2006). We will communicate our findings to public health commissioners and other stakeholders

    Diphosphine Bioconjugates via Pt(0)-Catalyzed Hydrophosphination. A Versatile Chelator Platform for Technetium-99m and Rhenium-188 Radiolabeling of Biomolecules

    Get PDF
    The ability to append targeting biomolecules to chelators that efficiently coordinate to the diagnostic imaging radionuclide, 99mTc, and the therapeutic radionuclide, 188Re, can potentially enable receptor-targeted “theranostic” treatment of disease. Here we show that Pt(0)-catalyzed hydrophosphination reactions are well-suited to the derivatization of diphosphines with biomolecular moieties enabling the efficient synthesis of ligands of the type Ph2PCH2CH2P(CH2CH2-Glc)2 (L, where Glc = a glucose moiety) using the readily accessible Ph2PCH2CH2PH2 and acryl derivatives. It is shown that hydrophosphination of an acrylate derivative of a deprotected glucose can be carried out in aqueous media. Furthermore, the resulting glucose-chelator conjugates can be radiolabeled with either 99mTc(V) or 188Re(V) in high radiochemical yields (&gt;95%), to furnish separable mixtures of cis- and trans-[M(O)2L2]+ (M = Tc, Re). Single photon emission computed tomography (SPECT) imaging and ex vivo biodistribution in healthy mice show that each isomer possesses favorable pharmacokinetic properties, with rapid clearance from blood circulation via a renal pathway. Both cis-[99mTc(O)2L2]+ and trans-[99mTc(O)2L2]+ exhibit high stability in serum. This new class of functionalized diphosphine chelators has the potential to provide access to receptor-targeted dual diagnostic/therapeutic pairs of radiopharmaceutical agents, for molecular 99mTc SPECT imaging and 188Re systemic radiotherapy.</p

    Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome.

    Get PDF
    RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.ERC, BBSR

    Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders.

    Get PDF
    Over 150 different proteins attach to the plasma membrane using glycosylphosphatidylinositol (GPI) anchors. Mutations in 18 genes that encode components of GPI-anchor biogenesis result in a phenotypic spectrum that includes learning disability, epilepsy, microcephaly, congenital malformations and mild dysmorphic features. To determine the incidence of GPI-anchor defects, we analysed the exome data from 4293 parent-child trios recruited to the Deciphering Developmental Disorders (DDD) study. All probands recruited had a neurodevelopmental disorder. We searched for variants in 31 genes linked to GPI-anchor biogenesis and detected rare biallelic variants in PGAP3, PIGN, PIGT (n=2), PIGO and PIGL, providing a likely diagnosis for six families. In five families, the variants were in a compound heterozygous configuration while in a consanguineous Afghani kindred, a homozygous c.709G>C; p.(E237Q) variant in PIGT was identified within 10-12 Mb of autozygosity. Validation and segregation analysis was performed using Sanger sequencing. Across the six families, five siblings were available for testing and in all cases variants co-segregated consistent with them being causative. In four families, abnormal alkaline phosphatase results were observed in the direction expected. FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the variants in PIGN, PIGT and PIGO all led to reduced activity. Splicing assays, performed using leucocyte RNA, showed that a c.336-2A>G variant in PIGL resulted in exon skipping and p.D113fs*2. Our results strengthen recently reported disease associations, suggest that defective GPI-anchor biogenesis may explain ~0.15% of individuals with developmental disorders and highlight the benefits of data sharing

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin
    corecore