11 research outputs found

    Hes1 Is Required for Appropriate Morphogenesis and Differentiation during Mouse Thyroid Gland Development

    Get PDF
    Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1−/− mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1−/− mouse embryos showed a significantly smaller total thyroid surface area (−40 to −60%) compared to wild type mice at all study time points (E9.5−E16.5). In both Hes1−/− and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1−/− mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1−/− thyroids revealed a significantly decreased labelling area for T4 (−78%) and calcitonin (−65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (−69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells

    Specific maternal microchimeric T cells targeting fetal antigens in β cells predispose to auto-immune diabetes in the child

    No full text
    Objective: During pregnancy there is an exchange of cells between the fetus and the mother including T lymphocytes that can persist after delivery. Previous studies have described an increased numbers of maternal cells in children with juvenile diabetes as compared to their unaffected siblings. Our objective was to assess the possibility for these chimeric T cells to trigger an anti-beta cell response

    Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment

    No full text
    In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-βH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-βH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity

    Regulated expression and function of the GABA B receptor in human pancreatic beta cell line and islets

    No full text
    International audienceG protein-coupled receptors are seven transmembrane signaling molecules that are involved in a wide variety of physiological processes. They constitute a large protein family of receptors with almost 300 members detected in human pancreatic islet preparations. However, the functional role of these receptors in pancreatic islets is unknown in most cases. We generated a new stable human beta cell line from neonatal pancreas. This cell line, named ECN90 expresses both subunits (GABBR1 and GABBR2) of the metabotropic GABAB receptor compared to human islet. In ECN90 cells, baclofen, a specific GABAB receptor agonist, inhibits cAMP signaling causing decreased expression of beta cell-specific genes such as MAFA and PCSK1, and reduced insulin secretion. We next demonstrated that in primary human islets, GABBR2 mRNA expression is strongly induced under cAMP signaling, while GABBR1 mRNA is constitutively expressed. We also found that induction and activation of the GABAB receptor in human islets modulates insulin secretion

    Dyrk1a haploinsufficiency induces diabetes in mice through decreased pancreatic beta cell mass

    No full text
    Aims/hypothesis: Growth factors and nutrients are important regulators of pancreatic beta cell mass and function. However, the signalling pathways by which these factors modulate these processes have not yet been fully elucidated. DYRK1A (also named minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family that has been conserved across evolution. A significant amount of data implicates DYRK1A in brain growth and function, as well as in neurodegenerative processes in Alzheimer's disease and Down's syndrome. We investigated here whether DYRK1A would be an attractive candidate for beta cell growth modulation. Methods: To study the role of DYRK1A in beta cell growth, we used Dyrk1a-deficient mice. Results: We show that DYRK1A is expressed in pancreatic islets and provide evidence that changes in Dyrk1a gene dosage in mice strongly modulate glycaemia and circulating insulin levels. Specifically, Dyrk1a-haploinsufficient mice show severe glucose intolerance, reduced beta cell mass and decreased beta cell proliferation. Conclusions/interpretation: Taken together, our data indicate that DYRK1A is a critical kinase for beta cell growth as Dyrk1a-haploinsufficient mice show a diabetic profile. © 2014 Springer-Verlag Berlin Heidelberg.The research leading to these results received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement No. 115439, comprising financial contributions from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies. The RS laboratory belongs to the Laboratoire d’Excellence consortium Revive. This work was supported by grants from Inserm ‘Junior 5-year Contract’ (LR)Peer Reviewe

    Tryptophan metabolism promotes immune evasion in human pancreatic β cellsResearch in context

    No full text
    Summary: Background: To resist the autoimmune attack characteristic of type 1 diabetes, insulin producing pancreatic β cells need to evade T-cell recognition. Such escape mechanisms may be conferred by low HLA class I (HLA-I) expression and upregulation of immune inhibitory molecules such as Programmed cell Death Ligand 1 (PD-L1). Methods: The expression of PD-L1, HLA-I and CXCL10 was evaluated in the human β cell line, ECN90, and in primary human and mouse pancreatic islets. Most genes were determined by real-time RT-PCR, flow cytometry and Western blot. Activator and inhibitor of the AKT signaling were used to modulate PD-L1 induction. Key results were validated by monitoring activity of CD8+ Jurkat T cells presenting β cell specific T-cell receptor and transduced with reporter genes in contact culture with the human β cell line, ECN90. Findings: In this study, we identify tryptophan (TRP) as an agonist of PD-L1 induction through the AKT signaling pathway. TRP also synergistically enhanced PD-L1 expression on β cells exposed to interferon-γ. Conversely, interferon-γ-mediated induction of HLA-I and CXCL10 genes was down-regulated upon TRP treatment. Finally, TRP and its derivatives inhibited the activation of islet-reactive CD8+ T cells by β cells. Interpretation: Collectively, our findings indicate that TRP could induce immune tolerance to β cells by promoting their immune evasion through HLA-I downregulation and PD-L1 upregulation. Funding: Dutch Diabetes Research Foundation, DON Foundation, the Laboratoire d’Excellence consortium Revive (ANR-10-LABX-0073), Agence Nationale de la Recherche (ANR-19-CE15-0014-01), Fondation pour la Recherche Médicale (EQ U201903007793–EQU20193007831), Innovative Medicines Initiative INNODIA and INNODIA HARVEST, Aides aux Jeunes Diabetiques (AJD) and Juvenile Diabetes Research Foundation Ltd (JDRF)

    A 3D atlas of the human developing pancreas to explore progenitor proliferation and differentiation

    No full text
    International audienceAims/hypothesis: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases.Methods: We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules.Results: We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors.Conclusions/interpretation: This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development
    corecore