1,881 research outputs found

    Deploying rural community wireless mesh networks

    Get PDF
    Inadequate Internet access is widening the digital divide between town and countryside, degrading both social communication and business advancements in rural areas. Wireless mesh networking can provide an excellent framework for delivering broadband services to such areas. With this in mind, Lancaster University deployed a WMN in the rural village of Wray over a three-year period, providing the community with Internet service that exceeds many urban offerings. The project gave researchers a real-world testbed for exploring the technical and social issues entailed in deploying WMNs in the heart of a small community

    iCapture: Facilitating Spontaneous User-Interaction with Pervasive Displays using Smart Devices

    Get PDF
    Abstract. The eCampus project at Lancaster University is an inter-disciplinary project aiming to deploy a wide range of situated displays across the University campus in order to create a large per-vasive communications infrastructure. At present, we are conducting a series of parallel research activities in order to investigate how the pervasive communications infrastructure can support the daily needs of staff, students and visitors to the University. This paper introduces one of our current research investigations into how one is able to mediate spontaneous interaction with the pervasive display infrastructure through camera equipped mobile phones (i.e. smart devices).

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    Approach range and velocity determination using laser sensors and retroreflector targets

    Get PDF
    Rockwell International is conducting an ongoing program to develop Laser Docking Sensors (LDS) that provide high performance and high intrinsic value while meeting all mission objectives. These LDS systems are now being required to aid future spacecraft docking, station keeping, and berthing/capture systems. Improved automated tracking, rendezvous, soft docking, and capture will be required in the construction and support of SSF and future orbiting platforms. The development of a practical LDS requires an easy-to-operate, low-cost, compact system. A wide range of options for laser range detection equipment, ranging from commercial technology to specialized military systems, was evaluated. This evaluation focused on both direct applicability of existing systems and usability of specific technologies contained in these systems. From these efforts it was determined that a new approach provided the greatest promise of fulfilling all mission requirements at the lowest life-cycle cost

    An experimental dynamic RAM video cache

    Get PDF
    As technological advances continue to be made, the demand for more efficient distributed multimedia systems is also affirmed. Current support for end-to-end QoS is still limited; consequently mechanisms are required to provide flexibility in resource loading. One such mechanism, caching, may be introduced both in the end-system and network to facilitate intelligent load balancing and resource management. We introduce new work at Lancaster University investigating the use of transparent network caches for MPEG-2. A novel architecture is proposed, based on router-oriented caching and the employment of large scale dynamic RAM as the sole caching medium. The architecture also proposes the use of the ISO/IEC standardised DSM-CC protocol as a basic control infrastructure and the caching of pre-built transport packets (UDP/IP) in the data plane. Finally, the work discussed is in its infancy and consequently focuses upon the design and implementation of the caching architecture rather than an investigation into performance gains, which we intend to make in a continuation of the work

    Prediction of the consequences of a CO2 pipeline release on building occupants

    Get PDF
    Carbon Capture and Storage (CCS) is recognised as one of a suite of solutions required to reduce carbon dioxide (CO2) emissions into the atmosphere and prevent catastrophic global climate change. In CCS schemes, CO2 is captured from large scale industrial emitters and transported to geological sites, such as depleted oil or gas fields or saline aquifers, where it is injected into the rock formation for storage. Pipelines are acknowledged as one of the safest, most efficient and cost-effective methods for transporting large volumes of fluid over long distances and therefore most of the proposed schemes for CCS involve onshore and/or offshore high pressure pipelines transporting CO2.In order to manage the risk in the unlikely event of the failure of a CO2 pipeline, it is necessary to define the separation distance between pipelines and habitable dwellings in order to ensure a consistent level of safety. For natural gas pipelines, existing and accepted QRA (Quantitative Risk Assessment) techniques can be implemented to define safety zones based on thermal hazards. However for high pressure CO2 pipelines, for which the hazard is toxic, the consequences of failure need to be considered differently, which will impact on the QRA assessment and the definition of safety distances.The requirement to develop a robust QRA methodology for high pressure CO2 pipelines has been recognised by National Grid as being critical to the implementation of CCS. Consequently, as part of the COOLTRANS (CO2 Liquid pipeline TRANSportation) research programme, failure frequency and consequence models are being developed that are appropriate for high pressure CO2 pipelines. One of the key components in the consequence modelling of a release from a CO2 pipeline is an infiltration model for CO2 into buildings to describe the impact on people inside buildings, and outside seeking shelter, during a release event.This paper describes the development of an infiltration model to predict how the concentration of CO2 within a building will change based on both wind driven and buoyancy driven ventilation of an external CO2 cloud into the building. The model considers the effects of either a constant or changing external concentration of CO2 during a release and allows the density effects of the dense cloud to be taken into account to enable the toxic effects on people within the building to be predicted. The paper then demonstrates how the ventilation model can be coupled to the results of a dispersion analysis from a pipeline release under different environmental conditions to develop the consequence data required for input into the QRA. These effects are illustrated through a case study example

    Reducing Cost and Contention of P2P Live Streaming through Locality and Piece Selection

    Get PDF
    The use of locality within peer-to-peer (P2P) networks is ensuring the construction of overlay networks that are both economically viable for network operators and scalable. However, the underlying protocols on which traditional P2P overlays are based are rapidly having to evolve in order to better support more time sensitive, real-time video delivery systems. This shift places greater demand on locality mechanisms to ensure the correct balance between bandwidth savings and successful timely playback. In this paper, we investigate the impact of peer locality within live streaming P2P systems and consider the pertinent challenges when designing locality based algorithms to support efļ¬cient P2P live streaming services. Based on our ļ¬ndings we propose an algorithm for supporting locality and harmonised play points in a live streaming P2P system. We present our results and in-depth analysis of its operation though a series of simulations which measure bandwidth consumption at network egress points, failure rates and each peerā€™s play point relative to the live stream
    • ā€¦
    corecore