
 

 

 
 

An Experimental Dynamic RAM Video Cache 
 

Nicholas J. P. Race, Daniel G. Waddington and Doug Shepherd 
Distributed Multimedia Research Group, 

Computing Department, Lancaster University, 
Lancaster, UK 

e-mail: [race, dan, doug]@comp.lancs.ac.uk 
 
 

Abstract 
 

As technological advances continue to be made, the 
demand for more efficient distributed multimedia systems 
is also affirmed. Current support for end-to-end QoS is 
still limited; consequently mechanisms are required to 
provide flexibility in resource loading. One such 
mechanism, caching, may be introduced both in the end-
system and network to facilitate intelligent load balancing 
and resource management.  We introduce new work at 
Lancaster University investigating the use of transparent 
network caches for MPEG-2.  A novel architecture is 
proposed, based on router-oriented caching and the 
employment of large scale dynamic RAM as the sole 
caching medium.  The architecture also proposes the use 
of the ISO/IEC standardised DSM-CC protocol as a basic 
control infrastructure and the caching of pre-built 
transport packets (UDP/IP) in the data plane.  Finally, 
the work discussed is in its infancy and consequently 
focuses upon the design and implementation of the 
caching architecture rather than an investigation into 
performance gains, which we intend to make in a 
continuation of the work. 
 
 
1. Introduction 
 

The delivery of real time continuous media such as 
digital audio and video is becoming increasingly 
important in today�s computing environment.  However, 
the high data rates and strict delivery constraints that 
continuous media imposes, have proven to be difficult to 
meet in high demand situations.  A wealth of research has 
been carried out over the past ten years to solve these 
problems, combining developments in efficient filing 
systems, highly optimised scheduling policies, admission 
control and resource management [1].  Whilst research 
has led to high performance servers, there are still 
complex issues surrounding the end-to-end delivery of 
audio and video across the Internet.  The large data size 
not only places a substantial load on the network, but also 
represents a high cost for video distribution, particularly if 

expensive backbone links are involved in the delivery 
process.  One approach to reducing this cost is the use of 
caching.  By inserting cache nodes in the local network, 
popular videos or clips can be serviced from local caches, 
resulting in a reduced network load over the greater 
distance.  Caching also brings additional benefits, in that 
videos streamed from the cache decrease the load on the 
server, allowing it to service other requests.  As caches are 
located close to clients, there is also reduced latency in 
establishing connection set-ups. 

Advances in hardware have brought about increased 
dynamic RAM capacities at a reduced cost; a pattern that 
is expected to continue for years to come.  Coupled with 
the move to 64-bit architectures, there is now more 
potential than ever to use RAM as a medium for video 
storage.  RAM brings many advantages to the real-time 
delivery of continuous media; not least the elimination of 
disk I/O bottlenecks and increased overall bandwidth.  
This provides the potential for supporting a very large 
number of concurrent accesses, and true Video On 
Demand (as opposed to Near Video On Demand) 
streaming.  When serving a large number of streams, it is 
suggested that RAM provides a more economic solution 
than disks due to its higher bandwidth capabilities [2]. 

In this paper we present the design and preliminary 
implementation details of a cache node using main 
memory as the primary caching medium.  In order to 
maximise throughput performance between RAM and the 
network interfaces, the node uses pre-built IP, which 
stores video data in memory in a pre-packetised format 
ready for immediate transmission by the network layer, 
thus avoiding the need for fragmentation or packet/header 
assembly.  Much of the implementation focuses upon the 
use of MPEG-2 as a streaming media type.  This is an 
internationally standardised format for broadcast quality 
digital video that is generic in its deployment capabilities. 

The paper is divided into the following sections.  
Section 2 provides an overview of the caching system 
from an architectural perspective, describing envisaged 
deployment scenarios and integration into the data and 
control environment.  Continuing, section 3 discusses 
some of the implementation aspects and the realisation of 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/1558429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

the caching node in Windows 2000.  Finally, sections 4 
and 5 overview some related work in the area and outline 
some directions of interest for future work. 
 
2. Caching architecture 
 

This section provides an overview of the caching 
architecture, describing envisaged deployment scenarios 
and integration into the control and data environment. 
 
2.1. Transparent caching 
 

Traditional web caching is achieved through the use of 
a proxy server, physically located between a client web 
browser and a server.  The proxy intercepts all packets, 
and examines each one in order to determine whether it 
can service the request itself, or whether an additional 
request has to be made to the server.  However, proxies 
generally need to be explicitly configured within the web 
browser for each client, which presents a large 
deployment cost and a non-scalable solution with respect 
to service provision.  A fundamental objective of the 
caching node is that it should be completely transparent to 
both video client and server so that no additional cost of 
ownership is incurred, hence making the node suitable for 
wide-scale deployment. 
 

Local Area
Network

Client

Router

(1)

(2)

(3)

(4)

Server

Switch Cache

 

Server

Local Area
Network

Client

Router

(1) (2)

Cache

 
 (a) (b) 
 

Figure 1. a) Transparent caching using L4 switches 
b) Proposed transparent approach 

 
A number of approaches to transparent caching were 

considered, the most common of which use L4 switches or 
policy-based routers.  In this case, user requests for web 
pages are diverted by a router/switch to a local cache, and 
all other network traffic forwarded as normal.  If the 
requested data is not available in the local cache, a 
separate TCP connection is established to the web server 
in order to retrieve (and store) it.  The data is then 
returned to the client, with any subsequent requests for the 
same data serviced from the local storage of the cache. 

Our proposed approach incorporates IP routing 
functionality within the cache node itself.  It is assumed 
that cache nodes are deployed within the local area 
network close to clients (rather than in the core) and 
therefore do not perform the intensive routing operations 
associated with core routers.  The inclusion of routing 
functionality means that the cache node must perform 
filtering of the appropriate video control and data packets, 
which could be considered to be an avoidable overhead.  
Nevertheless, the advantage to this approach is that both 
the server and client are unaware of the presence of the 
cache, and that no configuration changes are required by 
the end-systems in order to forward requests to the cache.  
In a commercial realisation of the architecture we would 
expect to take advantage of router hardware filtering to 
carry out some level of traffic redirection (such as Layer 4 
switching or policy-based routing) in order to divert traffic 
towards the cache node. 
 
2.2. Topology 
 

The basic networking architecture is shown in Figure 2.  
It consists of a continuous media server (able to support a 
number of concurrent stream accesses) connected via a 
high-speed interconnect to a backbone router.  The cache 
node is installed in each LAN, acting as an IP router and 
is directly attached to the backbone router connecting the 
LAN to the WAN.  The proposed architecture uses 
UDP/IP over an ATM-based IntServ/DiffServ 
infrastructure, and assumes negligible packet loss on such 
connections.  We believe that UDP is the preferable 
choice over TCP since it does not provide error correction 
and control, and is connection-less and therefore ideally 
suited to interception and masquerading. 
 

Video Server

Wide Area Network

Workstation

Workstation

Video Cache

Router

Router

Video Cache

Router

Router

Workstation

Workstation

Workstation

Workstation

 
Figure 2. Network topology 

 
The caches are able to use pre-built transport units, in 

this case UDP packets, as a unit of caching.  This avoids 
both the need for user level processing and the need for 
re-assembly of data leaving the node.  Because of the 
simplistic and connection-less nature of UDP, packets can 
be easily sent from the cache node in a form of 



 

 

masquerading whereby the client is unable to determine 
the originality of the data and thus the caching appears to 
be transparent. 
 
2.3. Integration with multimedia data 
architecture (MPEG-2) 
 

The MPEG-2 (Moving Pictures Experts Group) 
ISO/IEC 13818 standard [3] is designed to provide high 
quality video by exploiting spatial and temporal 
redundancies in the input source in order to achieve 
compression.  MPEG-2 has been widely adopted as the 
standard for digital video, and is used by DVB (Digital 
Video Broadcast), DAVIC and DVD. 

The MPEG-2 systems layer (ISO/IEC 13818-1) 
specifies two mechanisms for the multiplexing and 
synchronisation of elementary video and audio streams to 
form a single data stream that is suitable for storage or 
transmission.  Each mechanism is tailored for a different 
operating environment.  The first scheme, known as a 
Program Streaming, uses large packets of variable sizes 
and is designed for use in a largely error-free 
environment.  The scheme is similar to the MPEG-1 
multiplexing standard and can support only one program 
(a number of elementary video/audio streams with a 
common time base).  The second scheme, known as a 
Transport Streaming, can combine multiple programs 
with independent time bases into a single stream.  
Transport Streams use fixed length 188-byte packets, with 
additional error protection and incorporate timestamps 
within the packets to ensure correct synchronisation.  
They are intended for use in error-prone environments. 

The caching architecture is designed around the use of 
MPEG-2 Program Streams as the principal data format.  
This format, unlike Transport Streams, does not provide 
features for error correction and control.  However, in our 
experimental environment, this is not an essential 
requirement. 

Program Streams are constructed from one or more 
Packetised Elementary Stream (PES) packets.  A PES 
packet consists of a header and a payload.  The header 
contains important timing information in the form of a 
Presentation Time Stamp (PTS) and a Decoding Time 
Stamp (DTS), which is used to ensure correct 
synchronisation at the decoder.  The header also contains 
a stream_id field in order to distinguish one elementary 
stream from another within the same program.  The 
payload consists of the video and audio data bytes that 
have been encoded from the original source stream.  In a 
Program Stream, PES packets are arranged into logical 
groups known as �packs�.  A pack consists of a pack 
header, an optional system header and any number of 
PES-packets. The pack header also contains important 
timing information in the form of a System Clock 

Reference (SCR).  The PES stream structure is shown in 
Figure 3 below. 
 

pack
header pack 1 pack

header pack 2 pack
header pack n

PES packet 1 PES packet n..

...
optional system header

 
 

Figure 3. Structure of MPEG-2 Program Stream 
 
2.4. Integration with multimedia control 
architecture (DSM-CC) 
 

In designing a caching architecture, integration into the 
media control architecture is essential.  In this work we 
have adopted the ISO standardised Digital Storage Media 
� Command and Control (DSM-CC) protocol [4].  This 
protocol is a specific application protocol, intended to 
provide the basic control functions and operations to 
manage digital storage bit streams akin to MPEG-2.  It is 
designed for the command and control of retrieval/storage 
applications such as video-on-demand, interactive video 
services and electronic publishing. 
 

DSM

User

System
decoder

System
decoder

DSM-CC

DSM ACK

ISO/IEC 13818
Bitstream

ISO/IEC 13818
Bitstream

Video bitstream

Audio  bitstream
Video bitstream

Audio  bitstream  
 

Figure 4. Configuration of DSM-CC 
 
DSM-CC can be used in one of two modes, either as a 

stand-alone control protocol which is used in parallel to 
the transmission of the bit streams, or alternatively 
embedded in the data stream itself.  Both approaches 
packetise the DSM requests and acknowledgements as 
PES packets.  The formal specification does support a 
richer command and control model through the use of 
high level RPC (such as provided by CORBA or COM).  
It also defines both User-Network and User-User 
protocols.  However, for our own purposes, consideration 
for the User-Network DSM-CC requests and 
acknowledgements is sufficient. 

In the experimental platform, DSM-CC is used in 
stand-alone mode (i.e. it is not embedded within the data 
stream).  It is encapsulated in PES packets and transmitted 
over UDP/IP.  To initiate simple playback a client issues a 
bit stream select command to a given DSM server.  This 
select command carries a bit stream identifier 



 

 

corresponding to an ISO/IEC 13818 stream.  Providing 
the server holds the appropriate stream, a select 
acknowledgement is returned (to the sender�s UDP port).  
The client can now control the stream (play, stop, pause, 
resume and jump) through subsequent retrieve commands. 
 

Client DSM Server
DSM-CC bit stream select

select acknowledgement

DSM-CC retrieve (play)

retrieval acknowledgement

bit stream transmission

 
 

Figure 5. DSM-CC call sequence 
 
Within the caching topology as previously described, 

the cache server intercepts DSM-CC requests and if it is 
able to provide the desired bit stream from cache, then 
masquerades as the server itself (this is possible because 
of the simplicity of the control architecture), otherwise the 
DSM command is forwarded to the appropriate server.  In 
some scenarios the cache may be able to provide a portion 
of the bit stream (termed a partial hit).  Further discussion 
of partial cache hits and their handling is given in section 
2.6. 

 
Client Cache

DSM-CC bit stream select

select acknowledgement

DSM-CC retrieve (play)

retrieval acknowledgement

DSM Server

DSM-CC bit stream select

select acknowledgement

DSM-CC retrieve (play)

retrieval acknowledgement

bit stream transmission

bit stream transmission

bit stream transmission

 
 

Figure 6. Example command sequence 
for partial hit 

 
To determine which UDP packets make up a given bit 

stream, the caching node must assume that all PES 
packets originating from the DSM server, to a given port 
and address, constitute the same bit stream until an 
MPEG-2 end code is received.  It is therefore necessary 
for the cache to �snoop� the UDP payload during the 
caching process.  Where IPv6 is deployable, the cache is 
able to use the flow label instead, in which case the need 
for snooping is avoided. 
 

2.5. Caching behaviour and replacement policies 
 

Because of the large size of MPEG-2 video objects 
(typically in the order of a number of megabits per 
second, per film), it is intended that popular portions of 
large video objects and complete video clips are cached.  
The behaviour of the cache is controlled by a set of 
policies that dictate what to do in the event of a cache 
miss, a cache hit or a lack of available cache memory.  As 
the memory within the caching node becomes full, the 
cache must decide which data should be retained and 
which should be discarded.  A wide range of cache 
replacement policies are under consideration for use 
within the caching architecture.  Traditional caching 
research provides a number of alternative strategies to 
cache replacement.  Commonly used examples include 
LRU (Least Recently Used), which discards the data that 
was accessed the longest time ago.  It is based on the 
theory that data accessed recently is the most likely to be 
used again in the near future.  Alternatively LFU (Least 
Frequently Used) discards the data that has been accessed 
the least over time. 

Further caching policies can be brought from work on 
buffering and caching within multimedia servers.  They 
exploit the fact that multimedia objects are typically 
accessed in a sequential manner.  Blocks retrieved for one 
client can therefore be reused for subsequent requests 
within a short time interval [5, 6]. 

However, it is clear from an analysis of logged 
accesses to video data [7] that the initial portion of a video 
is often used to determine a users interest.  The 
importance of a replacement policy in maintaining the 
initial portion of a video within the cache is affirmed in 
[8], where it is suggested that using a proxy prefix caching 
technique to store the initial frames of popular clips hides 
latency, throughput and loss effects between the server 
and the proxy cache. 
 
2.6. Partial cache hits 
 
Unlike traditional caching, an entire object does not have 
to exist within the cache for a request to be satisfied.  A 
partial hit may occur when a request is made for data that 
partly exists within the cache.  This can arise if a 
previously cached object is no longer complete, for 
example when a portion of the object has been replaced in 
accordance with a specific cache replacement policy (e.g. 
the �tail� of a video stream is no longer present in the 
cache).  The cache can service the partial hit and 
simultaneously make a request to the server for the 
remainder of the stream.  A transparent �hand over� can 
then take place at the appropriate time.  Providing the 
request is made at the appropriate time, the retrieved 
stream can be optionally cached and then forwarded. 



 

 

3. Experimental design and implementation 
 

A significant contribution of this work is in the 
realisation of the system within a prototype environment.  
Although the prototype is still in its infancy, already the 
design and implementation have provided a number of 
additional insights into the problems faced in network 
caching strategies.  The prototype cache node is based on 
extensions to the Microsoft Windows 2000 Advanced 
Server operating system, with the caching mechanisms 
implemented as a kernel module (device driver), which 
interacts directly with the communications protocol stack.  
In terms of client/server networking infrastructure, the 
prototype cache node is connected as a gateway router 
between two private IP sub-networks.  Consequently, 
communications between given client/server nodes are 
forced to pass through the cache.  The video distribution 
application used within the experimental environment is a 
proprietary application providing simple MPEG-2 
streaming over UDP/IP, with an MPEG-2 hardware 
decoder card running under Linux as the client. 
 
3.1. Real-time IP interception and injection 
 

The cache node is designed to cache pre-built IP 
packets.  Because the core IP protocol processing is 
provided by the kernel, we are able to execute the 
necessary caching interactions without entering the upper 
layers.  This technique helps to keep the processing 
carried out by the cache to a minimum and thus enable the 
task of caching to be executed in real-time.  This is 
essential since the period required to filter and cache a 
packet must be less than the inter-packet interval.  If this 
is not achieved the cache will act as a bottleneck and 
consequently back up traffic at the source (this is 
comparable to the notion of non-blocking network 
switches). 
 

packet
re-addressing

packet
re-addressingcached packet

retrieval

cached packet
retrieval checksum

re-calculation

checksum
re-calculation

DSM-CC
request

information

DSM-CC
request

information

packet
injection

packet
injection

 
 

Figure 6. Packet re-send processes 
 

Before cached packets can be sent back out into the 
network, a process of adaptation or �moulding� must take 
place  (see Figure 6).  The primary purpose of this is re-
addressing and the adjustment of any checksum fields.  
New address fields for the IP packets are determined from 
the intercepted DSM-CC packets.  The initial prototype 

implementation uses IPv4, whilst adoption of IPv6 is 
underway. 
 
3.2. Cache entries/indexing 
 

An entry in the cache, known as a cache block, is made 
up of an informational header followed by a number of 
pre-built IP packets, made up of an IPv4 or IPv6 header 
and a series of MPEG packets within a UDP payload.  
Cache blocks are uniquely identified for storage and 
retrieval through a combination of bitstream_ID and 
presentation time (each 32 bits wide).  The bitstream_ID 
uniquely identifies a given media stream and is assigned 
by the DSM-CC server which maps them to more 
meaningful names.  The presentation time, in units of a 
second, is derived from the MPEG payload in the first IP 
packet of the cache block. 

The proposed caching architecture uses a two level 
indexing scheme to hold the mappings between the 
bitstream_ID/presentation time and the physical address 
of the cache block.  The first index, termed the cache 
index, provides a mapping between the stream identifier 
and the address (virtual) of the cache table.  This index 
has n entries, where n is the total number of unique 
streams distributed by the server(s).  Each cache table, per 
entry in the cache index, consists of an array of physical 
addresses corresponding to each cache block stored in the 
cache area for the given stream.  This scheme is strikingly 
similar to indexing traditionally found in virtual memory 
management, and in fact we envisage the future 
exploitation of such hardware support in a 64-bit platform. 

Because the scheme provides direct mappings, the 
resources required by the indices may be potentially large.  
Nevertheless, we are making the assumption that the 
reducing factor is the total number of unique streams 
concurrently handled by the system (in a more dynamic 
media environment, where content is frequently changed 
and therefore a large number of different streams may 
exist, a process of re-mapping would be required).  
Consequently, the cache node need only maintain a cache 
index capable of addressing the total number of unique 
streams that may exist in the cache at any given time.  
Furthermore, hardware and cost limitations means that this 
is constricted by the �capacity� of the node.  Our initial 
prototype provides ~2Gb of caching memory, capable of 
storing approximately 68 minutes (4096 seconds) of 
media.  Thus the maximum total overhead of the cache 
tables, assuming an average stream rate of 4Mbps, is only 
32Kb. 
 
3.3. Caching memory sub-system 
 

The nature of the caching architecture and its demands 
of memory management are significantly different than the 



 

 

requirements found in general purpose operating systems.  
Allocations, corresponding to individual cache blocks are 
relatively large (ranging from 256K � 1024K).  Blocks 
may exist outside the range of the virtual address space, at 
least within 32-bit architectures, which only provide 232 
virtual addresses (4Gb).  Furthermore, this problem is 
exacerbated by the operating system�s use of reserved 
areas, which within the Windows 2000 operating system, 
only leaves somewhere in the region of 512Mb of virtual 
addresses available for kernel modules.  To address this 
problem, the proposed design incorporates a specialised 
memory sub-system that offers memory management 
services specifically tailored to the task of video caching.  
The subsystem includes features such as Large Scale 
Addressing (beyond 4Gb of physical memory), Dynamic 
Address Mapping (mapping virtual addresses to cache 
blocks on demand) and partial frees (enable previously 
allocated blocks to be resized in a zero copy manner). 
 
4. Related work 
 

Research into buffering and caching within multimedia 
servers exploits the fact that multimedia objects are 
typically accessed in a sequential manner, which means 
that blocks retrieved for one client can therefore be reused 
for subsequent requests within a short time interval.  Such 
techniques include interval caching [5] whereby intervals 
between successive streams are cached, and distance 
caching [6], which replaces blocks of data based on the 
distance between successive clients. 

Research into caching multimedia streams within the 
network stems from the work in managing a distributed 
hierarchical video-on-demand system.  The Berkeley 
VOD System [9] is designed to provide transparent access 
to large amounts of video material.  Continuous media 
objects are stored on tertiary storage devices, and only 
copied to a file server when required.  The MiddleMan 
architecture [7] is a collection of cooperative proxy 
servers that, as an aggregate, cache video files within a 
local area network.  The design incorporates a central 
coordinator that is responsible for managing the video 
files stored at each proxy, controlling the storage and 
replacement of files and redirecting requests accordingly.  
An architecture for caching streaming media (known as 
SOCCER) is defined in [10].  It is based around the 
concept of cooperative helpers that are situated within the 
network and collectively perform caching.  

In addition to minimising start up latency, caching 
multimedia streams can also smooth the playback of 
variable bit rate (VBR) video streams.  Video streams 
exhibit burstiness due to the encoding scheme and 
variations within and between frames, which can be a 
problem in terms of buffer management and network 
utilisation.  Proxy prefix caching [8] overcomes this by 

using an intermediate proxy that caches the initial frames 
of popular audio/video clips and performs work ahead 
smoothing of variable bit-rate streams in order to reduce 
the resource requirements from the proxy to the client.  A 
similar technique known as video staging [11] pre-fetches 
and stores selected portions of VBR streams in a proxy.  
The aim is to reduce backbone bandwidth requirements by 
storing the bursty portions of a VBR stream within the 
proxy and combining them with a constant bit rate (CBR) 
video stream from the server for playout.  Another prefix 
caching scheme [12] also caches intermediate frames 
based on the encoding properties of the video stream and 
the users buffer size.  It attempts to store frames within the 
cache that are more critical to maintaining the robustness 
of the stream.  [13] considers an end-to-end architecture 
for the delivery of layered-encoded streams in the Internet 
using proxy caches to smooth out variations in quality by 
pre-fetching segments that are missing from the cache. 

Much of the work on proxy cache replacement 
strategies is tailored to HTML documents and images, and 
does not consider the impact of multimedia streams [14].  
However, [15] provides an investigation into multimedia 
streaming and cache replacement policies, introducing a 
caching algorithm based upon the resource requirements 
of an object.  Finally, [16] provides one of the few 
investigations into the use of main memory for caching, 
using trace-driven simulations to evaluate the performance 
benefits of main memory caching for web documents. 
 
5. Further work 
 

Work to date focuses on the use of large-scale RAM as 
a caching medium.  It is proposed that this be extended to 
incorporate fast access disks as an additional level to a 
more hierarchical caching approach.  However, the cache 
node�s disk storage will only be used as an intermediary 
before cache content is totally dropped.  It will not be 
used as a source medium for streaming. 

Future work will also examine the implications of other 
media types, in particularly ISO/IEC MPEG-4 [17].  This 
is a multimedia format that is object-oriented and lends 
itself to partial caching.  We envisage using media 
�objects� as a unit of caching, and the distributed gather of 
such objects to form a scene.  The adoption of such media 
types also opens up other areas of research interest.  One 
such area is co-operative caching, where by caching nodes 
within the network use some proprietary inter-nodal 
protocol to handoff cache requests to other nodes in the 
event of a local cache miss. 

Finally, the ISO standardised DSM-CC protocol has 
been adopted within the caching architecture for media 
control and playback.  Future work will investigate 
extending this to include support for RTSP [18]. 
 



 

 

6. Concluding remarks 
 

This paper presents ongoing work examining the initial 
design and implementation of a network caching 
architecture for high quality video, and more specifically 
ISO�s MPEG-2.  The discussed architecture is based on 
the notion of a transparent caching node, situated at the 
edge of the network, which is able to masquerade as a 
remote video server to its clients.  This transparency lends 
itself to simple management and straightforward 
integration into the majority of existing network 
topologies.   

The cache node, based on the Windows 2000 operating 
system, exploits high-speed main memory to cache pre-
built UDP/IP packets containing MPEG-2 data packets.  
This technique of using transport/network level data units 
avoids the transport layer re-fragmenting the video data, 
thus increasing performance.  In order to deploy such a 
cache, it is essential that the cache is able to integrate and 
cooperate with the video control architecture.  In our 
prototype implementation, we have chosen to support 
DSM-CC as the basic control protocol.  The cache 
behaves as a DSM proxy to the unaware client, 
intercepting control requests and forwarding/handling this 
as necessary. 
 
Acknowledgements 
 

We acknowledge the kind support of the Microsoft 
Research Labs, Cambridge, UK in funding this research 
under the LandMARC Research Project. 
 
References 
 
[1] D. Gemmell, H. Vin, D. Kandlur, P. Rangan and L. 
Rowe, �Multimedia Storage Servers: A Tutorial�, IEEE 
Computer, Vol. 28, No. 5, May 1995. 
 

[2] M. Kumar, �Video-server designs for supporting very 
large numbers of concurrent users�, IBM Journal of 
Research and Development, 1998, Vol. 42, No. 2, pp. 
219-232. 
 

[3] ISO/IEC 13818-1, �Generic Coding of Moving 
Pictures and Associated Audio Information: Part 1 - 
Systems�, Information Technology Specification, 
International Standard, 1996. 
 

[4] ISO/IEC 13818-6, �Generic Coding of Moving 
Pictures and Associated Audio Information: Part 6 - 
Extension for DSM-CC�, Information Technology 
Specification, International Standard, 1996. 
 

[5] A. Dan, D. Sitaram, �Multimedia caching strategies 
for heterogeneous application and server environments�, 
Multimedia Tools and Applications, pp.279-312, 1997. 
 

[6] B. Ozden, R. Rastogi, A. Silberschatz, �Buffer 
replacement algorithms for multimedia storage systems�, 
in Proceedings of the International Conference on 
Multimedia Computing and Systems, pp. 172-180, June 
1996. 
 

[7] S. Acharya, �Techniques for improving multimedia 
communication over wide area networks�, Ph.D Thesis, 
Department of Electrical Engineering, Cornell University, 
January 1999. 
 

[8] S. Sen, J. Rexford and D. Towsley, �Proxy prefix 
caching for multimedia streams�, in Proceedings of the 
IEEE Infocom, 1999. 
 

[9] D. W. Brubeck and L. A. Rowe, �Hierarchical Storage 
Management in a Distributed VOD System�, IEEE 
Multimedia, Fall 1996, Vol. 3, No. 3. 
 

[10] M. Hofmann, T.S. Eugene Ng, K. Guo, S. Paul, H. 
Zhang, �Caching Techniques for Streaming Multimedia 
over the Internet�, Bell Labs Technical Memorandum, 
April 1999. 
 

[11] Y. Wang, Z.-L. Zhang, D. Du and D. Su, �A 
network-conscious approach to end-to-end video delivery 
over wide area networks using proxy users�, in 
Proceedings of the IEEE Infocom, April 1998. 
 

[12] Z. Miao and A. Ortega, �Proxy caching for efficient 
video servers over the Internet�, in Proceedings of the 9th 
International Packet Video Workshop (PVW �99), New 
York, April 1999. 
 

[13] R. Rejaie, M. Handley, H. Yu and D. Estrin, �Proxy 
caching mechanism for multimedia playback streams in 
the Internet�, in Proceedings of the 4th International Web 
Caching Workshop, San Diego, California, March 31-
April 2, 1999. 
 

[14] M. Abrams, C. R. Standridge, G. Abdulla, S. 
Williams, E. A. Fox, �Caching Proxies: Limitations and 
Potentials�, in Proceedings of the 4th International World-
Wide Web Conference, pp. 119-133, Dec. 1995. 
 

[15] R. Tewari, H. Vin, A. Dan and D. Sitaram, �Resource 
based caching for web servers�, in Proceedings of 
SPIE/ACM Conference on Multimedia Computing and 
Networking, San Jose, 1998. 
 

[16] E.P. Markatos, �Main Memory Caching of Web 
Documents�, Computer Networks and ISDN Systems, 
1996, Vol. 28, No. 7-11, pp. 893-905. 
 

[17] ISO/IEC 14496-1, �Coding of Audio-visual Objects - 
Part 1: Systems�, Information Technology Specification, 
International Standard, 1999. 
 

[18] H. Schulzrinne, A. Rao and R. Lanphier, �Real Time 
Streaming Protocol (RTSP)�, Request for Comments 
(Proposed Standard) 2326, Internet Engineering Task 
Force, April 1998. 


	An Experimental Dynamic RAM Video Cache
	Figure 2. Network topology
	Figure 3. Structure of MPEG-2 Program Stream
	Figure 4. Configuration of DSM-CC
	Figure 5. DSM-CC call sequence
	Acknowledgements



