387 research outputs found

    Molecular characterization of membrane steroid receptors in hormone-sensitive cancers

    Get PDF
    Cancer is one of the most common causes of death worldwide, and its development is a re-sult of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can tran-scriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets

    Cortisol-induced SRSF3 expression promotes GR splicing, RACK1 expression and breast cancer cells migration

    Get PDF
    Recent data have demonstrated that triple negative breast cancer (TNBC) with high glucocorticoid receptor (GR) expression are associated to therapy resistance and increased mortality. Given that GR alternative splicing generates mainly GRα, responsible of glucocorticoids action, we investigated its role in the regulation of RACK1 (Receptor for Activated C Kinase 1), a scaffolding protein with a GRE (Glucocorticoid Response Element) site on its promoter and involved in breast cancer cells migration and invasion. We provide the first evidence that GRα transcriptionally regulates RACK1 by a mechanism connected to SRSF3 splicing factor, which promotes GRα, essential for RACK1 transcriptional regulation and consequently for cells migration. We also establish that this mechanism can be positively regulated by cortisol. Hence, our data elucidate RACK1 transcriptional regulation and demonstrate that SRSF3 involvement in cells migration implies its role in controlling different pathways thus highlighting that new players have to be considered in GR-positive TNBC

    Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea

    Get PDF
    The immune system is an efficient integrated network of cellular elements and chemicals developed to preserve the integrity of the organism against external insults and its correct functioning and balance are essential to avoid the occurrence of a great variety of disorders. To date, evidence from literature highlights an increase in immunological diseases and a great attention has been focused on the development of molecules able to modulate the immune response. There is an enormous global demand for new effective therapies and researchers are investigating new fields. One promising strategy is the use of herbal medicines as integrative, complementary and preventive therapy. The active components in medical plants have always been an important source of clinical therapeutics and the study of their molecular pharmacology is an enormous challenge since they offer a great chemical diversity with often multi-pharmacological activity. In this review, we mainly analysed the immunomodulatory/antinflammatory activity of Echinacea spp. and Curcuma longa, focusing on some issues of the phytochemical research and on new possible strategies to obtain novel agents to supplement the present therapies

    Role of hormones in the regulation of RACK1 expression as a signaling checkpoint in immunosenescence

    Get PDF
    Immunosenescence defines the decline in immune function that occurs with aging. This has been associated, at least in part, with defective cellular signaling via protein kinase C (PKC) signal transduction pathways. Our data suggest reduced PKC activation and consequently reduced response to lipopolysaccharide (LPS) stimulation and cytokine release. The lack of PKC activation seems to be dependent on the reduced expression of the receptor for activated C kinase 1 (RACK1), a scaffolding protein involved in multiple signal transduction cascades. The defective expression of RACK1 may be dependent on age-related alteration of the balance between the adrenal hormones cortisol and dehydroepiandrosterone (DHEA). DHEA levels reduce with aging, while cortisol levels remain substantially unchanged, resulting in an overall increase in the cortisol:DHEA ratio. These hormonal changes are significant in the context of RACK1 expression and signaling function because DHEA administration in vivo and in vitro can restore the levels of RACK1 and the function of the PKC signaling cascade in aged animals and in human cells. In contrast, there is evidence that cortisol can act as a negative transcriptional regulator of RACK1 expression. The rack1 gene promoter contains a glucocorticoid responsive element that is also involved in androgen signaling. Furthermore DHEA may have an indirect influence on the post-transcriptional regulation of the functions of the glucocorticoid receptor. In this review, we will examine the role of the hormonal regulation of rack1 gene transcriptional regulation and the consequences on signaling and function in immune cells and immunosenescence

    Conformational altered p53 affects neuronal function: relevance for the response to toxic insult and growth-associated protein 43 expression

    Get PDF
    The role of p53 in neurodegenerative diseases is essentially associated with neuronal death. Recently an alternative point of view is emerging, as altered p53 conformation and impaired protein function have been found in fibroblasts and blood cells derived from Alzheimer's disease patients. Here, using stable transfected SH-SY5Y cells overexpressing APP751wt (SY5Y-APP) we demonstrated that the expression of an unfolded p53 conformation compromised neuronal functionality. In particular, these cells showed (i) augmented expression of amyloid precursor protein (APP) and its metabolites, including the C-terminal fragments C99 and C83 and ÎČ-amyloid peptide (ii) high levels of oxidative markers, such as 4-hydroxy-2-nonenal Michael-adducts and 3-nitro-tyrosine and (iii) altered p53 conformation, mainly due to nitration of its tyrosine residues. The consequences of high-unfolded p53 expression resulted in loss of p53 pro-apoptotic activity, and reduction of growth-associated protein 43 (GAP-43) mRNA and protein levels. The role of unfolded p53 in cell death resistance and lack of GAP-43 transcription was demonstrated by ZnCl(2) treatment. Zinc supplementation reverted p53 wild-type tertiary structure, increased cells sensitivity to acute cytotoxic injury and GAP-43 levels in SY5Y-APP clone

    Human coagulation factor X deficiency caused by a mutant signal peptide that blocks cleavage by signal peptidase but not targeting and translocation to the endoplasmic reticulum

    Get PDF
    Human factor XSanto Domingo is a form of coagulation factor X in which a mutation within the signal peptide region of the precursor protein has been correlated genetically with a severe deficiency of factor X in the affected individual. A point mutation results in substitution of Arg for Gly at the critical -3 position of the factor X signal peptide. To determine the biochemical effect of this mutation on the biosynthesis of factor X, the wild-type and mutant factor X cDNAs were subcloned into a vector for transcription and translation in vitro. Translation products of mRNAs encoding portions of both mutant and wild-type proteins were used in a systematic biochemical approach to evaluate directly the effect of the mutation on targeting, transport, and proteolytic processing in vitro. The results show that targeting and transport of factor XSanto Domingo to the endoplasmic reticulum are functionally dissociated from the removal of the signal peptide by signal peptidase. Factor XSanto Domingo is translocated into the endoplasmic reticulum but not processed by signal peptidase. Transient expression of the wild-type and mutant factor X in human embryonic kidney 293 cells revealed apparently normal secretion of the glycosylated two-chain form of factor X but no secretion of factor XSanto Domingo. Thus, the inability of signal peptidase to cleave factor XSanto Domingo is directly responsible for the absence of circulating factor X and leads to the bleeding diathesis in the affected individual

    Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    Get PDF
    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles

    Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus

    Get PDF
    In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP

    High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly

    Get PDF
    The present study was designed to determine the correlation among dehydroepiandrosterone (DHEA), cortisol plasma levels, and immune functionality at the time of vaccination with antibody response to influenza vaccination in young and old, healthy volunteers. Fifty-two elderly subjects, ages 63-85 years, and 14 young subjects, ages 26-41 years, entered the study. Plasma levels of DHEA and cortisol and in vitro cytokine production in response to lipopolysaccharide (LPS) and phytohaemagglutinin (PHA) by peripheral blood leukocytes were assessed at the time of vaccination, and antibody titer was measured before and 18 days after influenza virus vaccination. Elderly subjects were characterized by an increase in the cortisol:DHEA ratio, mainly as a result of a decrease in DHEA. A decrease in LPS-induced tumor necrosis factor alpha (TNF-alpha), increased PHA-induced interleukin-10 (IL-10) release, and similar PHA-induced interferon-gamma production were observed in elderly subjects compared with young volunteers. Lower antibody titer to influenza A virus was observed in elderly individuals, and the seroconversion factor was found to be correlated inversely with IL-10 production and correlated directly with TNF-alpha production and to a lesser extent, with the plasma level of DHEA. These results suggest that altered cytokine production in elderly subjects at the moment of vaccination can be predictive of a low response to influenza vaccination and warrant the study of strategies to improve protection afforded by the use of vaccine
    • 

    corecore