14 research outputs found

    Impact of El Niño variability on oceanic phytoplankton

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this recordOceanic phytoplankton respond rapidly to a complex spectrum of climate-driven perturbations, confounding attempts to isolate the principal causes of observed changes. A dominant mode of variability in the Earth-climate system is that generated by the El Niño phenomenon. Marked variations are observed in the centroid of anomalous warming in the Equatorial Pacific under El Niño, associated with quite different alterations in environmental and biological properties. Here, using observational and reanalysis datasets, we differentiate the regional physical forcing mechanisms, and compile a global atlas of associated impacts on oceanic phytoplankton caused by two extreme types of El Niño. We find robust evidence that during Eastern Pacific (EP) and Central Pacific (CP) types of El Niño, impacts on phytoplankton can be felt everywhere, but tend to be greatest in the tropics and subtropics, encompassing up to 67% of the total affected areas, with the remaining 33% being areas located in high-latitudes. Our analysis also highlights considerable and sometimes opposing regional effects. During EP El Niño, we estimate decreases of -56 TgC/y in the tropical eastern Pacific Ocean, and -82 TgC/y in the western Indian Ocean, and increase of +13 TgC/y in eastern Indian Ocean, whereas during CP El Niño, we estimate decreases -68 TgC/y in the tropical western Pacific Ocean and -10 TgC/y in the central Atlantic Ocean. We advocate that analysis of the dominant mechanisms forcing the biophysical under El Niño variability may provide a useful guide to improve our understanding of projected changes in the marine ecosystem in a warming climate and support development of adaptation and mitigation plans

    Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.  The Gulf of Aden, situated in the northwest Arabian Sea and linked to the Red Sea, is a relatively unexplored ecosystem. Understanding of large-scale biological dynamics is limited by the lack of adequate datasets. In this study, we analyse 15 years of remotely-sensed chlorophyll-a data (Chl-a, an index of phytoplankton biomass) acquired from the Ocean Colour Climate Change Initiative (OC-CCI) of the European Space Agency (ESA). The improved spatial coverage of OC-CCI data in the Gulf of Aden allows, for the first time, an investigation into the full seasonal succession of phytoplankton biomass. Analysis of indices of phytoplankton phenology (bloom timing) reveals distinct phytoplankton growth periods in different parts of the gulf: a large peak during August (mid-summer) in the western part of the gulf, and a smaller peak during November (mid-autumn) in the lower central gulf and along the southern coastline. The summer bloom develops rapidly at the beginning of July, and its peak is approximately three times higher than that of the autumnal bloom. Remotely-sensed sea-surface temperature (SST), wind-stress curl, vertical nutrient profiles and geostrophic currents inferred from the sea-level anomaly, were analysed to examine the underlying physical mechanisms that control phytoplankton growth. During summer, the prevailing southwesterlies cause upwelling along the northern coastline of the gulf (Yemen), leading to an increase in nutrient availability and enhancing phytoplankton growth along the coastline and in the western part of the gulf. In contrast, in the central region of the gulf, lowest concentrations of Chl-a are observed during summer, due to strong downwelling caused by a mesoscale anticyclonic eddy. During autumn, the prevailing northeasterlies enable upwelling along the southern coastline (Somalia) causing local nutrient enrichment in the euphotic zone, leading to higher levels of phytoplankton biomass along the coastline and in the lower central gulf. The monsoon wind reversal is shown to play a key role in controlling phytoplankton growth in different regions of the Gulf of Aden.European Space Agenc

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    Get PDF
    AbstractThe Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.</jats:p

    Phytoplankton responses to marine climate change – an introduction

    Get PDF
    Phytoplankton are one of the key players in the ocean and contribute approximately 50% to global primary production. They serve as the basis for marine food webs, drive chemical composition of the global atmosphere and thereby climate. Seasonal environmental changes and nutrient availability naturally influence phytoplankton species composition. Since the industrial era, anthropogenic climatic influences have increased noticeably – also within the ocean. Our changing climate, however, affects the composition of phytoplankton species composition on a long-term basis and requires the organisms to adapt to this changing environment, influencing micronutrient bioavailability and other biogeochemical parameters. At the same time, phytoplankton themselves can influence the climate with their responses to environmental changes. Due to its key role, phytoplankton has been of interest in marine sciences for quite some time and there are several methodical approaches implemented in oceanographic sciences. There are ongoing attempts to improve predictions and to close gaps in the understanding of this sensitive ecological system and its responses

    Framework for understanding marine ecosystem health

    No full text
    Although the terms ‘health’ and ‘healthy’ are often applied to marine ecosystems and communicate information about holistic condition (e.g. as required by the Ecosystem Approach), their meaning is unclear. Ecosystems have been understood in various ways, from non-interacting populations of species to complex integrated systems. Health has been seen as a metaphor, an indicator that aggregates over system components, or a non-localized emergent system property. After a review, we define good ecosystem health as: ‘the condition of a system that is self-maintaining, vigorous, resilient to externally imposed pressures, and able to sustain services to humans. It contains healthy organisms and populations, and adequate functional diversity and functional response diversity. All expected trophic levels are present and well interconnected, and there is good spatial connectivity amongst subsystems.’ We equate this condition with good ecological or environmental status, e.g. as referred to by recent EU Directives. Resilience is central to health, but difficult to measure directly. Ecosystems under anthropogenic pressure are at risk of losing resilience, and thus of suffering regime shifts and loss of services. For monitoring whole ecosystems, we propose an approach based on ‘trajectories in ecosystem state space’, illustrated with time-series from the northwestern North Sea. Change is visualized as Euclidian distance from an arbitrary reference state. Variability about a trend in distance is used as a proxy for inverse resilience. We identify the need for institutional support for long time-series to underpin this approach, and for research to establish state space co-ordinates for systems in good health

    Phenological Changes of Blooming Diatoms Promoted by Compound Bottom-Up and Top-Down Controls

    No full text
    Understanding phytoplankton species-specific responses to multiple biotic and abiotic stressors is fundamental to assess phenological and structural shifts at the community level. Here, we present the case of Thalassiosira curviseriata, a winter-blooming diatom in the Bahía Blanca Estuary, Argentina, which displayed a noticeable decrease in the past decade along with conspicuous changes in phenology. We compiled interannual field data to assess compound effects of environmental variations and grazing by the invasive copepod Eurytemora americana. The two species displayed opposite trends over the period examined. The diatom decreased toward the last years, mainly during the winters, and remained relatively constant over the other seasons, while the copepod increased toward the last years, with an occurrence restricted to winter and early spring. A quantitative assessment by structural equation modeling unveiled that the observed long-term trend of T. curviseriata resulted from the synergistic effects of environmental changes driven by water temperature, salinity, and grazing. These results suggest that the shift in the abundance distribution of T. curviseriata toward higher annual ranges of temperature and salinity—as displayed by habitat association curves—constitutes a functional response to avoid seasonal overlapping with its predator in late winters. The observed changes in the timing and abundance of the blooming species resulted in conspicuous shifts in primary production pulses. Our results provide insights on mechanistic processes shaping the phenology and structure of phytoplankton blooms
    corecore