15 research outputs found

    Evaluating tropical phytoplankton phenology metrics using contemporary tools

    Get PDF
    The timing of phytoplankton growth (phenology) in tropical oceans is a crucial factor influencing the survival rates of higher trophic levels, food web structure and the functioning of coral reef ecosystems. Phytoplankton phenology is thus categorised as an ‘ecosystem indicator’, which can be utilised to assess ecosystem health in response to environmental and climatic perturbations. Ocean-colour remote sensing is currently the only technique providing global, long-term, synoptic estimates of phenology. However, due to limited available in situ datasets, studies dedicated to the validation of satellite-derived phenology metrics are sparse. The recent development of autonomous oceanographic observation platforms provides an opportunity to bridge this gap. Here, we use satellite-derived surface chlorophyll-a (Chl-a) observations, in conjunction with a Biogeochemical-Argo dataset, to assess the capability of remote sensing to estimate phytoplankton phenology metrics in the northern Red Sea – a typical tropical marine ecosystem. We find that phenology metrics derived from both contemporary platforms match with a high degree of precision (within the same 5-day period). The remotely-sensed surface signatures reflect the overall water column dynamics and successfully capture Chl-a variability related to convective mixing. Our findings offer important insights into the capability of remote sensing for monitoring food availability in tropical marine ecosystems, and support the use of satellite-derived phenology as an ecosystem indicator for marine management strategies in regions with limited data availability

    Phenological Responses to ENSO in the Global Oceans

    Get PDF
    Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth’s climate system, the El Nino–Southern Oscillation (ENSO) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the ENSO influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of ENSO may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where ENSO modulates a climate system characterised by a seasonal reversal of the wind forcing, such as the monsoon system in the Indian Ocean, phenology- based mean anomalies of physical variables help refine evaluation of the mechanisms driving the biological responses and provide a more comprehensive understanding of the integrated processes

    Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing

    Get PDF
    Seventeen years (1998–2014) of satellite-derived chlorophyll concentration (Chl) are used to analyse the seasonal and non-seasonal patterns of Chl variability and the long-term trends in phytoplankton phenology in the Mediterranean Sea. With marked regional variations, we observe that seasonality dominates variability representing up to 80% of total Chl variance in oceanic areas, whereas in shelf-sea regions high frequency variations may be dominant representing up to 49% of total Chl variance. Seasonal variations are typically characterized by a phytoplankton growing period occurring in spring and spanning on average 170 days in the western basin and 150 days in the eastern basin. The variations in peak Chl concentrations are higher in the western basin (0.88 ± 1.01 mg m−3) compared to the eastern basin (0.35 ± 1.36 mg m−3). Differences in the seasonal cycle of Chl are also observed between open ocean and coastal waters where more than one phytoplankton growing period are frequent (>0.8 probability). During the study period, on average in the western Mediterranean basin (based on significant trends observed over ~95% of the basin), we show a positive trend in Chl of +0.015 ± 0.016 mg m−3 decade−1, and an increase in the amplitude and duration of the phytoplankton growing period by +0.27 ± 0.29 mg m−3 decade−1 and +11 ± 7 days decade−1 respectively. Changes in Chl concentration in the eastern (and more oligotrophic) basin are generally low, with a trend of −0.004 ± 0.024 mg m−3 decade−1 on average (based on observed significant trends over ~70% of the basin). In this basin, the Chl peak has declined by −0.03 ± 0.08 mg m−3 decade−1 and the growing period duration has decreased by −12 ± 7 days decade−1. The trends in phytoplankton Chl and phenology, estimated in this study over the period 1998–2014, do not reveal significant overall decline/increase in Chl concentration or earlier/delayed timings of the seasonal peak on average over the entire Mediterranean Sea basin. However, we observed large regional variations, suggesting that the response of phytoplankton to environmental and climate forcing may be complex and regionally driven

    Remotely Sensing the Biophysical Drivers of Sardinella aurita Variability in Ivorian Waters

    Get PDF
    The coastal regions of the Gulf of Guinea constitute one of the major marine ecosystems, producing essential living marine resources for the populations of Western Africa. In this region, the Ivorian continental shelf is under pressure from various anthropogenic sources, which have put the regional fish stocks, especially Sardinella aurita, the dominant pelagic species in Ivorian industrial fishery landings, under threat from overfishing. Here, we combine in situ observations of Sardinella aurita catch, temperature, and nutrient profiles, with remote-sensing ocean-color observations, and reanalysis data of wind and sea surface temperature, to investigate relationships between Sardinella aurita catch and oceanic primary producers (including biomass and phenology of phytoplankton), and between Sardinella aurita catch and environmental conditions (including upwelling index, and turbulent mixing). We show that variations in Sardinella aurita catch in the following year may be predicted, with a confidence of 78%, based on a bilinear model using only physical variables, and with a confidence of 40% when using only biological variables. However, the physics-based model alone is not sufficient to explain the mechanism driving the year-to-year variations in Sardinella aurita catch. Based on the analysis of the relationships between biological variables, we demonstrate that in the Ivorian continental shelf, during the study period 1998–2014, population dynamics of Sardinella aurita, and oceanic primary producers, may be controlled, mainly by top-down trophic interactions. Finally, based on the predictive models constructed here, we discuss how they can provide powerful tools to support evaluation and monitoring of fishing activity, which may help towards the development of a Fisheries Information and Management System

    Impact of El Niño Variability on Oceanic Phytoplankton

    Get PDF
    Oceanic phytoplankton respond rapidly to a complex spectrum of climate-driven perturbations, confounding attempts to isolate the principal causes of observed changes. A dominant mode of variability in the Earth-climate system is that generated by the El Niño phenomenon. Marked variations are observed in the centroid of anomalous warming in the Equatorial Pacific under El Niño, associated with quite different alterations in environmental and biological properties. Here, using observational and reanalysis datasets, we differentiate the regional physical forcing mechanisms, and compile a global atlas of associated impacts on oceanic phytoplankton caused by two extreme types of El Niño. We find robust evidence that during Eastern Pacific (EP) and Central Pacific (CP) types of El Niño, impacts on phytoplankton can be felt everywhere, but tend to be greatest in the tropics and subtropics, encompassing up to 67% of the total affected areas, with the remaining 33% being areas located in high-latitudes. Our analysis also highlights considerable and sometimes opposing regional effects. During EP El Niño, we estimate decreases of −56 TgC/y in the tropical eastern Pacific Ocean, and −82 TgC/y in the western Indian Ocean, and increase of +13 TgC/y in eastern Indian Ocean, whereas during CP El Niño, we estimate decreases −68 TgC/y in the tropical western Pacific Ocean and −10 TgC/y in the central Atlantic Ocean. We advocate that analysis of the dominant mechanisms forcing the biophysical under El Niño variability may provide a useful guide to improve our understanding of projected changes in the marine ecosystem in a warming climate and support development of adaptation and mitigation plans

    Estimation of the Potential Detection of Diatom Assemblages Based on Ocean Color Radiance Anomalies in the North Sea

    Get PDF
    Over the past years, a large number of new approaches in the domain of ocean-color have been developed, leading to a variety of innovative descriptors for phytoplankton communities. One of these methods, named PHYSAT, currently allows for the qualitative detection of five main phytoplankton groups from ocean-color measurements. Even though PHYSAT products are widely used in various applications and projects, the approach is limited by the fact it identifies only dominant phytoplankton groups. This current limitation is due to the use of biomarker pigment ratios for establishing empirical relationships between in-situ information and specific ocean-color radiance anomalies in open ocean waters. However, theoretical explanations of PHYSAT suggests that it could be possible to detect more than dominance cases but move more toward phytoplanktonic assemblage detection. Thus, to evaluate the potential of PHYSAT for the detection of phytoplankton assemblages, we took advantage of the Continuous Plankton Recorder (CPR) survey, collected in both the English Channel and the North Sea. The available CPR dataset contains information on diatom abundance in two large areas of the North Sea for the period 1998-2010. Using this unique dataset, recurrent diatom assemblages were retrieved based on classification of CPR samples. Six diatom assemblages were identified in-situ, each having indicators taxa or species. Once this first step was completed, the in-situ analysis was used to empirically associate the diatom assemblages with specific PHYSAT spectral anomalies. This step was facilitated by the use of previous classifications of regional radiance anomalies in terms of shape and amplitude, coupled with phenological tools. Through a matchup exercise, three CPR assemblages were associated with specific radiance anomalies. The maps of detection of these specific radiances anomalies are in close agreement with current in-situ ecological knowledge

    Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Get PDF
    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future

    A novel method to retrieve oceanic phytoplankton phenology from satellite data in the presence of data gaps

    No full text
    Phytoplankton phenology is increasingly recognised as a key ecological indicator to characterise marine ecosystems. Existing methods to quantify phenology are often limited by gaps in the data record or by differences between the assumed and actual shapes of the seasonal cycle. A novel method to estimate phytoplankton phenology from satellite chlorophyll-a data is presented here, allowing us to determine the shape of the annual cycle from the data themselves, and to fill data gaps using data from the vicinity at a larger spatial scale. Up to two chlorophyll-a peaks (blooms) per annual cycle can be identified, and their timings and magnitudes estimated. The outputs are a set of time series with no data gaps at a succession of spatial scales, together with information at each scale about the climatological shape of the annual cycle, and the timing and magnitude of the principal and secondary blooms in each year. To illustrate the application of the algorithm we present the results from a 12 year time series of SeaWiFS data from 1998 to 2009 in the North Atlantic; the timings and magnitudes of blooms show strong spatial patterns, and hence are suitable for incorporation into the definitions of ecological provinces. Due to its generic nature, the handling of data gaps and the lack of reliance on a pre-defined seasonal cycle, the method has a wide range of other potential applications including land-based phenology and the study of the timing of seasonal sea ice cover

    Plankton indicators and ocean observing systems: support to the marine ecosystem state assessment

    No full text
    Ecological indicators are used extensively as tools to manage environmental resources. In the oceans, indicators of plankton can be measured using a variety of observing systems including: mooring stations, ships, autonomous floats and ocean colour remote sensing. Given the broad range of temporal and spatial sampling resolutions of these different observing systems, as well as discrepancies in measurements obtained from different sensors, the estimation and interpretation of plankton indicators can present significant challenges. To provide support to the assessment of the state of the marine ecosystem, we propose a suite of plankton indicators and subsequently classify them in an ecological framework that characterizes key attributes of the ecosystem. We present two case studies dealing with plankton indicators of biomass, size structure and phenology, estimated using the most spatially extensive and longest in situ and remote-sensing observations. Discussion of these studies illustrates how some of the challenges in estimating and interpreting plankton indicators may be addressed by using for example relative measurement thresholds, interpolation procedures and delineation of biogeochemical provinces. We demonstrate that one of the benefits attained, when analyzing a suite of plankton indicators classified in an ecological framework, is the elucidation of non-trivial changes in composition, structure and functioning of the marine ecosystem
    corecore