9 research outputs found

    The clinical application of cancer immunotherapy based on naturally circulating dendritic cells

    Get PDF
    Dendritic cells (DCs) can initiate and direct adaptive immune responses. This ability is exploitable in DC vaccination strategies, in which DCs are educated ex vivo to present tumor antigens and are administered into the patient with the aim to induce a tumor-specific immune response. DC vaccination remains a promising approach with the potential to further improve cancer immunotherapy with little or no evidence of treatment-limiting toxicity. However, evidence for objective clinical antitumor activity of DC vaccination is currently limited, hampering the clinical implementation. One possible explanation for this is that the most commonly used monocyte-derived DCs may not be the best source for DC-based immunotherapy. The novel approach to use naturally circulating DCs may be an attractive alternative. In contrast to monocyte-derived DCs, naturally circulating DCs are relatively scarce but do not require extensive culture periods. Thereby, their functional capabilities are preserved, the reproducibility of clinical applications is increased, and the cells are not dysfunctional before injection. In human blood, at least three DC subsets can be distinguished, plasmacytoid DCs, CD141+ and CD1c+ myeloid/conventional DCs, each with distinct functional characteristics. In completed clinical trials, either CD1c+ myeloid DCs or plasmacytoid DCs were administered and showed encouraging immunological and clinical outcomes. Currently, also the combination of CD1c+ myeloid and plasmacytoid DCs as well as the intratumoral use of CD1c+ myeloid DCs is under investigation in the clinic. Isolation and culture strategies for CD141+ myeloid DCs are being developed. Here, we summarize and discuss recent clinical developments and future prospects of natural DC-based immunotherapy

    Influence of Lenvatinib on the Functional Reprogramming of Peripheral Myeloid Cells in the Context of Non-Medullary Thyroid Carcinoma

    No full text
    Lenvatinib is a multitarget tyrosine kinase inhibitor (TKI) approved for the treatment of several types of cancers, including metastatic differentiated thyroid cancer (DTC). The intended targets include VEGFR 1–3, FGFR 1–4, PDGFRα, RET, and KIT signaling pathways, but drug resistance inevitably develops and a complete cure is very rare. Recent data has revealed that most of the TKIs have additional ‘off-target’ immunological effects, which might contribute to a protective antitumor immune response; however, human cellular data are lacking regarding Lenvatinib-mediated immunomodulation in DTC. Here, we investigated in ex vivo models the impact of Lenvatinib on the function of immune cells in healthy volunteers. We found that monocytes and macrophages were particularly susceptible to Lenvatinib, while neutrophiles and lymphocytes were less affected. In tumor-immune cell co-culture experiments, Lenvatinib exerted a broad inhibitory effect on the proinflammatory response in TC-induced macrophages. Interestingly, Lenvatinib-treated cells had decreased cellular M2 membrane markers, whereas they secreted a significantly higher level of the anti-inflammatory cytokine IL-10 upon LPS stimulation. In addition, prolonged exposure to Lenvatinib impaired macrophages survival and phenotypical differentiation, which was accompanied by remarkable morphological changes and suppressed cellular metabolic activity. These effects were mediated by myeloid cell-intrinsic mechanisms which are independent of Lenvatinib’s on-target activity. Finally, using specific inhibitors, we argue that dual effects on p38 MAPK and Syk pathways are likely the underlying mechanism of the off-target immunological effects we observed in this study. Collectively, our data show the immunomodulatory properties of Lenvatinib on human monocytes. These insights could be harnessed for the future design of novel treatment strategies involving a combination of Lenvatinib with other immunotherapeutic agents

    Enhanced lipid biosynthesis in human tumor-induced macrophages contributes to their protumoral characteristics

    No full text
    Background Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment (TME) in non-medullary thyroid carcinoma (TC) and neuroblastoma (NB), being associated with a poor prognosis for patients. However, little is known about how tumors steer the specific metabolic phenotype and function of TAMs.Methods In a human coculture model, transcriptome, metabolome and lipidome analysis were performed on TC-induced and NB-induced macrophages. The metabolic shift was correlated to functional readouts, such as cytokine production and reactive oxygen species (ROS) production, including pharmacological inhibition of metabolic pathways.Results Based on transcriptome and metabolome analysis, we observed a strong upregulation of lipid biosynthesis pathways in TAMs. Subsequently, lipidome analysis revealed that tumor-induced macrophages have an increased total lipid content and enriched levels of intracellular lipids, especially phosphoglycerides and sphingomyelins. Strikingly, this metabolic shift in lipid synthesis contributes to their protumoral functional characteristics: blocking key enzymes of lipid biosynthesis in the tumor-induced macrophages reversed the increased inflammatory cytokines and the capacity to produce ROS, two well-known protumoral factors in the TME.Conclusions Taken together, our data show that tumor cells can stimulate lipid biosynthesis in macrophages to induce protumoral cytokine and ROS responses and advocate lipid biosynthesis as a potential therapeutic target to reprogram the TME

    chemotherapy?

    Get PDF
    Summary This study aimed to assess the proportion of patients with advanced breast cancer who report benefit from first-line palliative chemotherapy using a simple global measure of wellbeing and to identify factors predicting benefit. A consecutive series of women with advanced breast cancer undergoing first-line palliative chemotherapy was evaluated. The main outcome measure was patient report of overall wellbeing assessed at post-treatment interview. Physical, psychological and functional status were assessed using the Rotterdam Symptom Checklist (RSCL) on three occasions (pretreatment, at the start of the third cycle and post treatment). It was planned that treatment would be discontinued after six cycles (i.e. 18-24 weeks). One hundred and sixty patients started treatment, of whom 155 were assessable for quality of life. After treatment, 41 (26%) patients reported they felt better, 29 (19%) felt the same and 34 (22%) felt worse than they did before treatment. The other 51 (33%) patients either died or stopped attending the hospital before the post-treatment interview and were assigned as treatment 'failures'. Patients who reported feeling better after treatment had improvements in psychological distress (P < 0.0001), pain (P = 0.01), lack of energy (P = 0.02) and tiredness (P = 0.02), as well as improvement in functional status (P = 0.07). Feeling better was also correlated with disease response (P = 0.03). Feeling worse after treatment or treatment 'failure ' was predicted by the pretreatment presence of a dry mouth (P = 0.003) and high levels of psychological distress (P = 0.03). Pretreatment lack of energy (P = 0.01), dry mouth (P = 0.02), presence of liver metastases (P = 0.03) and breathlessness (P = 0.03) predicted treatment 'failures'. The results of this study suggest that first-line palliative chemotherapy for advanced breast cancer confers benefit on a substantial proportion of patients, with about one-quarter feeling better after treatment and nearly a half feeling better or the same some 4-6 months after the start of treatment. Factor

    induction of trained immunity in adherent human monocytes.

    No full text
    A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed "trained immunity." We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using β-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016)
    corecore