144 research outputs found

    Human genetics branches out in Barcelona

    Get PDF
    A report of the European Human Genetics Conference, Barcelona, Spain, 31 May-3 June 2008

    Looking into the genetic bases of OCD dimensions: a pilot genome-wide association study

    Get PDF
    The multidimensional nature of obsessive-compulsive disorder (OCD) has been consistently reported. Clinical and biological characteristics have been associated with OCD dimensions in different ways. Studies suggest the existence of specific genetic bases for the different OCD dimensions. In this study, we analyze the genomic markers, genes, gene ontology and biological pathways associated with the presence of aggressive/checking, symmetry/order, contamination/cleaning, hoarding, and sexual/religious symptoms, as assessed via the Dimensional Yale-Brown Obsessive Compulsive Scale (DY-BOCS) in 399 probands. Logistic regression analyses were performed at the single-nucleotide polymorphism (SNP) level. Gene-based and enrichment analyses were carried out for common (SNPs) and rare variants. No SNP was associated with any dimension at a genome-wide level (p < 5 × 10−8). Gene-based analyses showed one gene to be associated with hoarding (SETD3, p = 1.89 × 10−08); a gene highly expressed in the brain and which plays a role in apoptotic processes and transcriptomic changes, and another gene associated with aggressive symptoms (CPE; p = 4.42 × 10−6), which is involved in neurotrophic functions and the synthesis of peptide hormones and neurotransmitters. Different pathways or biological processes were represented by genes associated with aggressive (zinc ion response and lipid metabolism), order (lipid metabolism), sexual/religious (G protein-mediated processes) and hoarding (metabolic processes and anion transport) symptoms after FDR correction; while no pathway was associated with contamination. Specific genomic bases were found for each dimension assessed, especially in the enrichment analyses. Further research with larger samples and different techniques, such as next-generation sequencing, are needed to better understand the differential genetics of OCD dimensions

    Whole genome and exome sequencing of monozygotic twins discordant for Crohn's disease

    Get PDF
    Background Crohn's disease (CD) is an inflammatory bowel disease caused by genetic and environmental factors. More than 160 susceptibility loci have been identified for IBD, yet a large part of the genetic variance remains unexplained. Recent studies have demonstrated genetic differences between monozygotic twins, who were long thought to be genetically completely identical. Results We aimed to test if somatic mutations play a role in CD etiology by sequencing the genomes and exomes of directly affected tissue from the bowel and blood samples of one and the blood-derived exomes of two further monozygotic discordant twin pairs. Our goal was the identification of mutations present only in the affected twins, pointing to novel candidates for CD susceptibility loci. We present a thorough genetic characterization of the sequenced individuals but detected no consistent differences within the twin pairs. An estimate of the CD susceptibility based on known CD loci however hinted at a higher mutational load in all three twin pairs compared to 1,920 healthy individuals. Conclusion Somatic mosaicism does not seem to play a role in the discordance of monozygotic CD twins. Our study constitutes the first to perform whole genome sequencing for CD twins and therefore provides a valuable reference dataset for future studies. We present an example framework for mosaicism detection and point to the challenges in these types of analyses

    The ASXL1 mutation p.Gly646Trpfs*12 found in a Turkish boy with Bohring-Opitz syndrome

    Full text link
    Bohring‐Opitz syndrome (BOS, MIM #605039) is a rare and severe disease characterized mainly by intrauterine growth retardation, feeding difficulties, severe to profound developmental delay, nonspecific brain abnormalities, microcephaly, flexion at the elbows with ulnar deviation and flexion of the wrists and metacarpophalangeal joints (known as BOS posture) and distinctive facial features.1 Heterozygous ASXL1 truncating mutations have been identified as the main cause of BOS.1, 2 A recent publication 3 called the attention to the fact that mutations associated with BOS are also present in the ExAC (Exome Aggregation Consortium) database.4 As ASXL1 is one of the genes most commonly mutated during hematopoietic clonal expansion of cells, the authors hypothesized that the presence of this mutation in public databases could be due to somatic mosaicism, and they could confirm the hypothesis by manual examination of the ExAC WES reads

    Genetic analysis in a familial case with high bone mineral density suggests additive effects at two loci

    Full text link
    Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture-resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole-exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high-BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z-score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine-nucleotide-exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high-BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein-coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high-BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Genome-wide analysis of single nucleotide polymorphisms and copy number variants in fibromyalgia suggest a role for the central nervous system

    Get PDF
    Fibromyalgia (FM) is a highly disabling syndrome defined by a low pain threshold and a permanent state of pain. The mechanisms explaining this complex disorder remain unclear, and its genetic factors have not yet been identified. With the aim of elucidating FM genetic susceptibility factors, we selected 313 FM cases having low comorbidities, and we genotyped them on the Illumina 1 million duo array. Genotypic data from 220 control women (Illumina 610k array) was obtained for genome-wide association scan (GWAS) analysis. Copy number variants in FM susceptibility were analyzed by array comparative genomic hybridization (aCGH) experiments on pooled samples using the Agilent 2 × 400K platform. No single nucleotide polymorphism (SNP) reached GWAS association threshold, but 21 of the most associated SNPs were chosen for replication in 952 cases and 644 controls. Four of the SNPs selected for replication showed a nominal association in the joint analysis, and rs11127292 (MYT1L) was found to be associated to FM with low comorbidities (P = 4.28 × 10−5, odds ratio [95% confidence interval] = 0.58 [0.44-0.75]). aCGH detected 5 differentially hybridized regions. They were followed up, and an intronic deletion in NRXN3 was demonstrated to be associated to female cases of FM with low levels of comorbidities (P = .021, odds ratio [95% confidence interval] = 1.46 [1.05-2.04]). Both GWAS and aCGH results point to a role for the central nervous system in FM genetic susceptibility. If the proposed FM candidate genes were further validated in replication studies, this would highlight a neurocognitive involvement in agreement with latest reports

    De Novo PORCN and ZIC2 mutations in a highly consanguineous family

    Get PDF
    We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity

    Gene Network of Susceptibility to Atypical Femoral Fractures Related to Bisphosphonate Treatment

    Get PDF
    Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication

    Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder

    Get PDF
    Although the etiology of obsessive-compulsive disorder (OCD) is largely unknown, it is accepted that OCD is a complex disorder. There is a known bi-directional interaction between the gut microbiome and brain activity. Several authors have reported associations between changes in gut microbiota and neuropsychiatric disorders, including depression or autism. Furthermore, a pediatric-onset neuropsychiatric OCD-related syndrome occurs after streptococcal infection, which might indicate that exposure to certain microbes could be involved in OCD susceptibility. However, only one study has investigated the microbiome of OCD patients to date. We performed 16S ribosomal RNA gene-based metagenomic sequencing to analyze the stool and oropharyngeal microbiome composition of 32 OCD cases and 32 age and gender matched controls. We estimated different α- and β-diversity measures and performed LEfSe and Wilcoxon tests to assess differences in bacterial distribution. OCD stool samples showed a trend towards lower bacterial α-diversity, as well as an increase of the relative abundance of Rikenellaceae, particularly of the genus Alistipes, and lower relative abundance of Prevotellaceae, and two genera within the Lachnospiraceae: Agathobacer and Coprococcus. However, we did not observe a different Bacteroidetes to Firmicutes ratio between OCD cases and controls. Analysis of the oropharyngeal microbiome composition showed a lower Fusobacteria to Actinobacteria ratio in OCD cases. In conclusion, we observed an imbalance in the gut and oropharyngeal microbiomes of OCD cases, including, in stool, an increase of bacteria from the Rikenellaceae family, associated with gut inflammation, and a decrease of bacteria from the Coprococcus genus, associated with DOPAC synthesis

    Advancing in Schaaf-Yang syndrome pathophysiology: from bedside to subcellular analyses of truncated MAGEL2

    Full text link
    Background Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. Methods We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-β 1-40 peptide (Aβ1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild- type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. Results Functional studies show significantly decreased levels of secreted Aβ1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. Conclusion A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aβ1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management
    corecore