311 research outputs found

    Critical review of the Appropriate Use Criteria for amyloid imaging: Effect on diagnosis and patient care

    Get PDF
    INTRODUCTION: The utility of the Appropriate Use Criteria (AUC) for amyloid imaging is not established. METHODS: Fifty-three cognitively impaired patients with clinical F18-florbetapir imaging were classified as early and late onset, as well as AUC-consistent or AUC-inconsistent. Chi-square statistics and t test were used to compare demographic characteristics and clinical outcomes as appropriate. RESULTS: Early-onset patients were more likely to be amyloid positive. Change in diagnosis was more frequent in late-onset cases. Change in therapy was more common in early-onset cases. AUC-consistent and AUC-inconsistent cases had comparable rates of amyloid positivity. We saw no difference in the rate of treatment changes in the AUC-consistent group as opposed to the AUC-inconsistent group. DISCUSSION: The primary role of amyloid imaging in the early-onset group was to confirm the clinically suspected etiology, and in the late-onset group in detecting amyloid-negative cases. The rate of therapeutic changes was significantly greater in the early-onset cases

    Patient and caregiver assessment of the benefits from the clinical use of amyloid PET imaging

    Get PDF
    INTRODUCTION: Few studies to date have explored patient and caregiver views on the clinical use of amyloid positron emission tomography (PET). METHODS: A 7-item questionnaire assessing patient and caregiver views (510 total respondents) toward amyloid PET imaging was advertised broadly through alz.org/trialmatch. RESULTS: We received 510 unique responses from 48 US states, 2 Canadian provinces, the Dominican Republic, and Greece. Both patients and caregivers indicated that they would want to receive amyloid imaging if offered the opportunity. Over 88% of respondents had a positive response (∼10% with neutral and 2% with negative responses) to whether amyloid PET should be offered routinely and be reimbursed. Such information was felt to be useful for long-term legal, financial, and health care planning. Respondents identifying with early age cognitive decline (younger than 65 y) were more likely to explore options for disability insurance (P=0.03). Responders from the Midwest were more likely to utilize information from amyloid imaging for legal planning (P=0.02), disability insurance (P=0.02), and life insurance (P=0.04) than other US regions. DISCUSSION: Patients and caregivers supported the use of amyloid PET imaging in clinical practice and felt that the information would provide significant benefits particularly in terms of future planning

    rPOP: Robust PET-Only Processing of Community Acquired Heterogeneous Amyloid-PET Data

    Get PDF
    The reference standard for amyloid-PET quantification requires structural MRI (sMRI) for preprocessing in both multi-site research studies and clinical trials. Here we describe rPOP (robust PET-Only Processing), a MATLAB-based MRI-free pipeline implementing non-linear warping and differential smoothing of amyloid-PET scans performed with any of the FDA-approved radiotracers (18F-florbetapir/FBP, 18F-florbetaben/FBB or 18F-flutemetamol/FLUTE). Each image undergoes spatial normalization based on weighted PET templates and data-driven differential smoothing, then allowing users to perform their quantification of choice. Prior to normalization, users can choose whether to automatically reset the origin of the image to the center of mass or proceed with the pipeline with the image as it is. We validate rPOP with n = 740 (514 FBP, 182 FBB, 44 FLUTE) amyloid-PET scans from the Imaging Dementia—Evidence for Amyloid Scanning – Brain Health Registry sub-study (IDEAS-BHR) and n = 1,518 scans from the Alzheimer\u27s Disease Neuroimaging Initiative (n = 1,249 FBP, n = 269 FBB), including heterogeneous acquisition and reconstruction protocols. After running rPOP, a standard quantification to extract Standardized Uptake Value ratios and the respective Centiloids conversion was performed. rPOP-based amyloid status (using an independent pathology-based threshold of ≥24.4 Centiloid units) was compared with either local visual reads (IDEAS-BHR, n = 663 with complete valid data and reads available) or with amyloid status derived from an MRI-based PET processing pipeline (ADNI, thresholds of \u3e20/\u3e18 Centiloids for FBP/FBB). Finally, within the ADNI dataset, we tested the linear associations between rPOP- and MRI-based Centiloid values. rPOP achieved accurate warping for N = 2,233/2,258 (98.9%) in the first pass. Of the N = 25 warping failures, 24 were rescued with manual reorientation and origin reset prior to warping. We observed high concordance between rPOP-based amyloid status and both visual reads (IDEAS-BHR, Cohen\u27s k = 0.72 [0.7–0.74], ∼86% concordance) or MRI-pipeline based amyloid status (ADNI, k = 0.88 [0.87–0.89], ∼94% concordance). rPOP- and MRI-pipeline based Centiloids were strongly linearly related (R2:0.95, p\u3c0.001), with this association being significantly modulated by estimated PET resolution (β= -0.016, p\u3c0.001). rPOP provides reliable MRI-free amyloid-PET warping and quantification, leveraging widely available software and only requiring an attenuation-corrected amyloid-PET image as input. The rPOP pipeline enables the comparison and merging of heterogeneous datasets and is publicly available at https://github.com/leoiacca/rPO

    Determinants of cognitive and brain resilience to tau pathology: a longitudinal analysis

    Get PDF
    Mechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e. cognitive resilience) and brain structure (i.e. brain resilience) despite abundant tau pathology, and to clarify whether these associations are cross-sectional or longitudinal. We employed a longitudinal study design to investigate the role of several demographic, biological and brain structural factors in yielding cognitive and brain resilience to tau pathology as measured with PET. In this multicenter study, we included 366 amyloid-β-positive individuals with mild cognitive impairment or Alzheimer's disease-dementia with baseline [18F]flortaucipir-PET and longitudinal cognitive assessments. A subset (n = 200) additionally underwent longitudinal structural MRI. We used linear mixed-effects models with global cognition and cortical thickness as dependent variables to investigate determinants of cognitive resilience and brain resilience, respectively. Models assessed whether age, sex, years of education, APOE-ε4 status, intracranial volume (and cortical thickness for cognitive resilience models) modified the association of tau pathology with cognitive decline or cortical thinning. We found that the association between higher baseline tau-PET levels (quantified in a temporal meta-region of interest) and rate of cognitive decline (measured with repeated Mini-Mental State Examination) was adversely modified by older age (Stβinteraction = -0.062, P = 0.032), higher education level (Stβinteraction = -0.072, P = 0.011) and higher intracranial volume (Stβinteraction = -0.07, P = 0.016). Younger age, higher education and greater cortical thickness were associated with better cognitive performance at baseline. Greater cortical thickness was furthermore associated with slower cognitive decline independent of tau burden. Higher education also modified the negative impact of tau-PET on cortical thinning, while older age was associated with higher baseline cortical thickness and slower rate of cortical thinning independent of tau. Our analyses revealed no (cross-sectional or longitudinal) associations for sex and APOE-ε4 status on cognition and cortical thickness. In this longitudinal study of clinically impaired individuals with underlying Alzheimer's disease neuropathological changes, we identified education as the most robust determinant of both cognitive and brain resilience against tau pathology. The observed interaction with tau burden on cognitive decline suggests that education may be protective against cognitive decline and brain atrophy at lower levels of tau pathology, with a potential depletion of resilience resources with advancing pathology. Finally, we did not find major contributions of sex to brain nor cognitive resilience, suggesting that previous links between sex and resilience might be mainly driven by cross-sectional differences

    Clinical use of amyloid-positron emission tomography neuroimaging: Practical and bioethical considerations

    Get PDF
    Until recently, estimation of β-amyloid plaque density as a key element for identifying Alzheimer's disease (AD) pathology as the cause of cognitive impairment was only possible at autopsy. Now with amyloid-positron emission tomography (amyloid-PET) neuroimaging, this AD hallmark can be detected antemortem. Practitioners and patients need to better understand potential diagnostic benefits and limitations of amyloid-PET and the complex practical, ethical, and social implications surrounding this new technology. To complement the practical considerations, Eli Lilly and Company sponsored a Bioethics Advisory Board to discuss ethical issues that might arise from clinical use of amyloid-PET neuroimaging with patients being evaluated for causes of cognitive decline. To best address the multifaceted issues associated with amyloid-PET neuroimaging, we recommend this technology be used only by experienced imaging and treating physicians in appropriately selected patients and only in the context of a comprehensive clinical evaluation with adequate explanations before and after the scan

    Four distinct trajectories of tau deposition identified in Alzheimer’s disease

    Get PDF
    Alzheimer’s Disease Neuroimaging Initiative.Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging.J.W.V. acknowledges support from the government of Canada through a tri-council Vanier Canada Graduate Doctoral fellowship from the McGill Centre for Integrative Neuroscience and the Healthy Brains, Healthy Lives initiative, and from the National Institutes of Health (NIH) (no. T32MH019112). A.L.Y. is supported by a Medical Research Council Skills Development Fellowship (MR/T027800/1). N.P.O. is a UK Research and Innovation Future Leaders Fellow (no. MR/S03546X/1). N.P.O. and D.C.A. acknowledge support from the UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and D.C.A. acknowledges support from the Engineering and Physical Sciences Research Council grant no. EP/M020533/1. M.J.G. is supported by the Miguel Servet program (no. CP19/00031) and a research grant (no. PI20/00613) of the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional. R.L.J. acknowledges support from the NIH (no. K99AG065501). This project received funding from the European Union’s Horizon 2020 research and innovation programme under grant no. 666992. The BioFINDER studies are supported by the Swedish Research Council (no. 2016-00906), the Knut and Alice Wallenberg Foundation (no. 2017-0383), the Marianne and Marcus Wallenberg Foundation (no. 2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer’s Foundation (no. AF-939932), the Swedish Brain Foundation (no. FO2019-0326), the Swedish Parkinson Foundation (no. 1280/20), the Skåne University Hospital Foundation (no. 2020-O000028), Regionalt Forskningsstöd (no. 2020-0314) and the Swedish Federal Government under the ALF agreement (no. 2018-Projekt0279). The Tau PET study in Gangnam Severance Hospital was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (nos. NRF2018R1D1A1B07049386 and NRF2020R1F1A1076154) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute funded by the Ministry of Health and Welfare, Republic of Korea (grant no. HI18C1159). We also thank B. L. Miller, H. J. Rosen, M. Gorno Tempini and W. Jagust for supporting the UCSF tau-PET studies, which were funded through the following sources: National Institute on Aging (NIA) no. R01 AG045611 (G.D.R.), no. P50 AG23501 (B.L.M., H.J.R., G.D.R.), no. P01 AG019724 (B.L.M., H.J.R., G.D.R.). The precursor of 18F-flortaucipir was provided by AVID Radiopharmaceuticals. The precursor of 18F-flutemetamol was sponsored by GE Healthcare. The precursor of 18F-RO948 was provided by Roche. Data collection and sharing for this project were funded by ADNI (NIH grant no. U01 AG024904) and Department of Defense ADNI (award no. W81XWH-12-2-0012). ADNI is funded by the NIA, the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; Bioclinica; Biogen; Bristol Myers Squibb; CereSpir; Cogstate; Eisai; Elan Pharmaceuticals; Eli Lilly and Company; EUROIMMUN; F. Hoffmann-La Roche and its affiliated company Genentech; Fujirebio; GE Healthcare; IXICO; Janssen Alzheimer Immunotherapy Research Development; Johnson & Johnson Pharmaceutical Research Development; Lumosity; Lundbeck; Merck; Meso Scale Diagnostics; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Nonfluent/Agrammatic PPA with In-Vivo Cortical Amyloidosis and Pick’s Disease Pathology

    Get PDF
    The role of biomarkers in predicting pathological findings in the frontotemporal dementia (FTD) clinical spectrum disorders is still being explored. We present comprehensive, prospective longitudinal data for a 66 year old, right-handed female who met current criteria for the nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA). She first presented with a 3-year history of progressive speech and language impairment mainly characterized by severe apraxia of speech. Neuropsychological and general motor functions remained relatively spared throughout the clinical course. Voxel-based morphometry (VBM) showed selective cortical atrophy of the left posterior inferior frontal gyrus (IFG) and underlying insula that worsened over time, extending along the left premotor strip. Five years after her first evaluation, she developed mild memory impairment and underwent PET-FDG and PiB scans that showed left frontal hypometabolism and cortical amyloidosis. Three years later (11 years from first symptom), post-mortem histopathological evaluation revealed Pick's disease, with severe degeneration of left IFG, mid-insula, and precentral gyrus. Alzheimer’s disease (AD) (CERAD frequent/Braak Stage V) was also detected. This patient demonstrates that biomarkers indicating brain amyloidosis should not be considered conclusive evidence that AD pathology accounts for a typical FTD clinical/anatomical syndrome

    Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA

    Get PDF
    Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neuro-degeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neuro-degeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention
    • …
    corecore