21 research outputs found

    Resource:A Cellular Developmental Taxonomy of the Bone Marrow Mesenchymal Stem Cell Population in Mice

    Get PDF
    Mesenchymal stem cells (MSCs) play pivotal roles in tissue (re)generation. In the murine bone marrow, they are thought to reside within the Sca-1(+) CD51(+) bone marrow stromal cell population. Here, using scRNAseq, we aimed to delineate the cellularheterogeneity of this MSC-enriched population throughout development. At the fetal stage, the MSC population is relatively homogeneous with subsets predicted to contain stem/progenitor cells, based on transcriptional modeling and marker expression. These subsets decline in relative size throughout life, with postnatal emergence of specialized clusters, including hematopoietic stem/progenitor cell (HSPC) niches. In fetal development, these stromal HSPC niches are lacking, but subsets of endothelial cells express HSPC factors, suggesting that they may provide initial niches for emerging hematopoiesis. This cellular taxonomy of the MSC population upon development is anticipated to provide a resource aiding the prospective identification of cellular subsets and molecular mechanisms driving bone marrow (re)generation

    Myeloid cells promote interferon signaling-associated deterioration of the hematopoietic system

    Get PDF
    Innate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs. Depletion of myeloid cells abrogates HSC expansion, loss of serial repopulation and lymphoid reconstitution capacity and remodeling of HSC niches, features previously associated with hematopoietic aging. This is associated with mitigation of interferon signaling in both HSCs and their niches via reduction of NK cell number and activation. These data implicate myeloid cells in the functional decline of hematopoiesis, associated with activation of interferon signaling via a putative neutrophil-NK cell axis. Innate immunity may thus come at the cost of system deterioration through enhanced chronic inflammatory signaling to stem cells and their niches

    Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells

    Get PDF
    Bone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs. In this study, we elucidate the impact of IFN-γ on the hematopoietic support of BM-MSCs. We found that IFN-γ increases expression of interleukin (IL)-6 and stem cell factor by human BM-MSCs. IFN-γ-treated BM-MSCs drive HSPCs toward myeloid commitment in vitro, but impair subsequent differentiation of HSPC. Moreover, IFN-γ-ARE-Del mice with increased IFN-γ production specifically lose their BM-MSCs, which correlates with a loss of hematopoietic stem cells\u27 quiescence. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, we conclude that IFN-γ negatively affects maintenance of BM-MSCs and their hematopoietic support in vitro and in vivo

    A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML

    Get PDF
    Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR + stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment.</p

    Regional disparities in the use of intensive chemotherapy for AML in the Netherlands: Does it influence survival?

    Get PDF
    Objective Acute myeloid leukaemia (AML) prognosis is enhanced with intensive remission induction chemotherapy (ICT) in eligible patients. However, ICT eligibility perceptions may differ among healthcare professionals. This nationwide, population-based study aimed to explore regional variation in ICT application and its relation with overall survival (OS). Methods and analysis We compared nine Dutch regional networks using data from the Netherlands Cancer Registry. Regional variance was assessed for the entire population and age subgroups (ie, ≤60 years and >60 years) using multivariable mixed effects logistic and Cox proportional hazard regression analyses, expressed via median OR (MOR) and median HR (MHR). Results Including all adult AML patients from 2014 to 2018 (N=4060 patients; 58% males; median age, 70 years), 1761 (43%) received ICT. ICT application varied from 36% to 57% (MOR 1.36 (95% CI 1.11 to 1.58)) across regions, with minor variations for patients aged ≤60 years (MOR 1.16 (95% CI 1.00 to 1.40)) and more extensive differences for those aged >60 years (MOR 1.43 (95% CI 1.16 to 1.63)). Median OS spanned 4.9-8.4 months across regions (MHR 1.11 (95% CI 1.00 to 1.15)), with pronounced differences in older patients (MHR 1.12 (95% CI 1.08 to 1.20)) but negligible differences in the younger group (MHR 1.02 (95% CI 1.00 to 1.14)). Survival differences for the total population and the older patients decreased to respectively, MHR 1.09 (95% CI 1.00 to 1.13) and 1.10 (95% CI 1.04 to 1.18), after additional adjustment for the probability of receiving ICT within a region, indicating approximately 10% unexplained differences. Conclusion Regional disparities in ICT application and survival exist, especially in older AML patients. However, ICT application differences partially explain survival disparities, indicating the need for more standardised ICT eligibility criteria and a better understanding of underlying causes of outcome disparities

    Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia

    Get PDF
    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system but the molecular mechanisms and their relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the preleukemic disorder Shwachman-Diamond syndrome induces mitochondrial dysfunction, oxidative stress and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the mouse model and a range of human preleukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome, the principal leukemia predisposition syndrome. Collectively, our findings reveal a concept of mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as an actionable determinant of disease outcome in human preleukemia

    Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    Get PDF
    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell- based adaptive immunity
    corecore