32 research outputs found
Quality changes and shelf-life prediction of a fresh fruit and vegetables purple smoothie
The sensory, microbial and bioactive quality changes of untreated (CTRL) and mild heat−treated (HT; 90 ºC/45 s) smoothies were studied and modelled throughout storage (5, 15 and 25 ºC). The overall acceptability was better preserved in HT samples being highly correlated (hierarchical clustering) with the flavour. The sensory quality data estimated smoothie shelf−life (CTRL/HT) of 18/55 (at 5 ºC), 4.5/12 (at 15 ºC), 2.4/5.8 (at 25 ºC) days. The yeast and moulds growth rate was lower in HT compared to CTRL while a lag phase for mesophiles/psychrophiles was observed in HT−5/15 ºC. HT and 5 ºC−storage stabilized the phenolics content. FRAP reported the best correlation (R2=0.94) with the studied bioactive compounds, followed by ABTS (R2=0.81) while DPPH was the total antioxidant capacity method with the lowest adjustment (R2=0.49). Conclusively, modelling was used to estimate the shelf−life of a smoothie based on quality retention after a short time−high temperature heat treatment that better preserved microbial and nutritional quality during storage.The financial support of this research was provided by the Ministerio Español de Economía y Competitividad MINECO (Projects AGL2013−48830−C2−1−R and AGL2013−48993−C2−1−R) and by FEDER funds. G.A. González−Tejedor thanks to Panamá Government for the scholarship to carry out his PhD Thesis. A. Garre (BES−2014−070946) is grateful to the MINECO for awarding him a pre−doctoral grant. We are also grateful to E. Esposito and N. Castillejo for their skilful technical assistance
Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth
Retrospective cohort studies of repeat donors reveal donor‐dependent variability in the recovery of transfused platelets
Response to selection for parasitism of a suboptimal, low‐preference host in an aphid parasitoid
Vegetation changes associated with a population irruption by Roosevelt elk
Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23-year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four-stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing
