11 research outputs found

    Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions.

    Get PDF
    In vitro evolution methodologies are powerful approaches to identify RNA with new functionalities. While Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an efficient approach to generate new RNA aptamers, it is less suited for the isolation of efficient ribozymes as it does not select directly for the catalysis. In vitro compartmentalization (IVC) in aqueous droplets in emulsions allows catalytic RNAs to be selected under multiple-turnover conditions but suffers severe limitations that can be overcome using the droplet-based microfluidics workflow described in this paper. Using microfluidics, millions of genes in a library can be individually compartmentalized in highly monodisperse aqueous droplets and serial operations performed on them. This allows the different steps of the evolution process (gene amplification, transcription, and phenotypic assay) to be uncoupled, making the method highly flexible, applicable to the selection and evolution of a variety of RNAs, and easily adaptable for evolution of DNA or proteins. To demonstrate the method, we performed cycles of random mutagenesis and selection to evolve the X-motif, a ribozyme which, like many ribozymes selected using SELEX, has limited multiple-turnover activity. This led to the selection of variants, likely to be the optimal ribozymes that can be generated using point mutagenesis alone, with a turnover number under multiple-turnover conditions, kss cat, ∼28-fold higher than the original X-motif, primarily due to an increase in the rate of product release, the rate-limiting step in the multiple-turnover reaction

    Functional and structural features of the regulation of a eukaryotic aminoacyl-tRNA synthetase,the case of Saccharomyces cerevisiae aspartyl-tRNA synthetase

    No full text
    L'aminoacylation spécifique des ARN de transfert (ARNt) par l'acide aminé homologue est catalysée par les aminoacyl-ARNt synthétases (aaRS). L'aspartyl-ARNt synthétase (AspRS) de Saccharomyces cerevisiae reconnaît spécifiquement, non seulement l'ARNtAsp, mais également son propre ARN messager (ARNmAspRS).Le complexe formé entre l'AspRS et son ARNmAspRS est l'étape initiale du mécanisme de rétro-régulation de l'expression de l'AspRS. Celle-ci est caractérisée par trois originalités, (i) L'AspRS est présente dans le noyau, (ii) c'est une régulation transcriptionnelle médiée par l'interaction de l'AspRS avec son propre ARNm et (iii) elle implique une coordination de l'expression de l'AspRS avec la concentration cellulaire en ARNt.L'interaction AspRS/ARNmAspRS a été caractérisée au niveau structural par cartographie en solution. Les régions d'ARNm reconnues par l'AspRS ont été identifiées au moyen d'expériences d'empreinte et de mutagenèse dirigée. La structure secondaire est originale à plusieurs égards : (i) elle s'organise en deux domaines indépendants ; (ii) chacun est reconnu par un monomère de l'enzyme ; (iii) un des domaines mime la branche anticodon de l'ARNtAsp avec un triplet anticodon GUC.Les conséquences physiologiques induites par une augmentation de la concentration en AspRS ont été également abordées. In vitro, l'aspartylation de l'ensemble des ARNt de levure en présence de concentrations croissantes en enzyme a montré que l'AspRS aspartyle de façon incorrecte l'ARNtGlu et l'ARNtAsn. In vivo, la construction d'un gène rapporteur conférant à la levure une résistance à la généticine n'a pas permis de détecter cette aspartylation incorrecte, en revanche, le suivi du protéome de la levure lorsque l'AspRS est surexprimée a établi les conditions d'accumulation de l'AspRS dans la cellule suggérant l'existence d'un verrou supplémentaire pour contenir l'aspartylation et assurer la survie de la cellule.Accurate translation of genetic information necessitates the tuned expression of a large group of genes. Amongst them, controlled expression of the enzymes catalyzing the aminoacylation of tRNAs, the aminoacyl-tRNA synthetases (aaRS), is essential to insure translational fidelity. Here, it is shown that expression of AspRS is regulated in Saccharomyces cerevisiae by a feedback mechanism, that necessitates the binding of AspRS to its messenger RNA. The correlation between AspRS expression and mRNAAspRS and tRNAAsp concentrations, as well as the presence of AspRS in the nucleus, suggest an original regulation mechanism. It is proposed that the surplus of AspRS, not sequestered by tRNAAsp, is imported in the nucleus where it binds to mRNAAspRS and thus inhibits its accumulation.We have established the folding of the 300-nucleotides long 5' end of mRNAApRS and identified the structural signals involved in the regulation process. We propose that the mRNAAspRS fragment folds in two independent and symmetrically structured domains spaced by two single-stranded connectors. Domain I displays a tRNAAsp anticodon-like stem-loop structure that is restricted in domain II to a short double-stranded helix. The overall mRNA structure, based on enzymatic and chemical probing, support a model where each monomer of yeast AspRS binds one individual domain and recognizes the mRNA structure like it recognizes its cognate tRNAAsp.Finally, the consequences of an increased concentration of AspRS in the cell have been tested. In vitro, high AspRS concentrations lead to mis-aspartylation of tRNAAsn and tRNAGlu. In vivo, the design of a reporter gene conferring an antibiotic resistance, dependent on mischarged tRNAs, did not allow to detect any cross aminoacylation. However, the proteomic analysis of yeasts overexpressing AspRS pointed out the conditions of AspRS accumulation in the cell by detecting the presence of an additional control mechanism at the post-translational level

    Functional and structural features of the regulation of a eukaryotic aminoacyl-tRNA synthetase,the case of Saccharomyces cerevisiae aspartyl-tRNA synthetase

    No full text
    L'aminoacylation spécifique des ARN de transfert (ARNt) par l'acide aminé homologue est catalysée par les aminoacyl-ARNt synthétases (aaRS). L'aspartyl-ARNt synthétase (AspRS) de Saccharomyces cerevisiae reconnaît spécifiquement, non seulement l'ARNtAsp,Accurate translation of genetic information necessitates the tuned expression of a large group of genes. Amongst them, controlled expression of the enzymes catalyzing the aminoacylation of tRNAs, the aminoacyl-tRNA synthetases (aaRS), is essential to ins

    Aspects fonctionnels et structuraux de la régulation de l'expression d'une aminoacyl-ARNt synthétase eucaryote (l'aspartyl-ARNt synthétase de Saccharomyces cerevisiae)

    No full text
    L'aminoacylation spécifique des ARN de transfert (ARNt) par l'acide aminé homologue est catalysée par les aminoacyl-ARNt synthétases (aaRS). L'aspartyl-ARNt synthétase (AspRS) de Saccharomyces cerevisiae reconnaît spécifiquement, non seulement l'ARNtAsp, mais également son propre ARN messager (ARNmAspRS).Le complexe formé entre l'AspRS et son ARNmAspRS est l'étape initiale du mécanisme de rétro-régulation de l'expression de l'AspRS. Celle-ci est caractérise e par trois originalités, (i) L'AspRS est présente dans le noyau, (ii) c'est une régulation transcriptionnelle médiée par l'interaction de l'AspRS avec son propre ARNm et (iii) elle implique une coordination de l'expression de l'AspRS avec la concentration cellulaire en ARNt.L'interaction AspRS/ARNmAspRS a été caractérisée au niveau structural par cartographie en solution. Les régions d'ARNm reconnues par l'AspRS ont été identifiées au moyen d'expériences d'empreinte et de mutagenèse dirigée. La structure secondaire est originale à plusieurs égards : (i) elle s'organise en deux domaines indépendants; (ii) chacun est reconnu par un monomère de l'enzyme; (iii) un des domaines mime la branche anticodon de l'ARNtAsp avec un triplet anticodon GUC.Les conséquences physiologiques induites par une augmentation de la concentration en AspRS ont été également abordées. In vitro, l'aspartylation de l'ensemble des ARNt de levure en présence de concentrations croissantes en enzyme a montré que l'AspRS aspartyle de façon incorrecte l'ARNtGlu et l'ARNtAsn. In vivo, la construction d'un gène rapporteur conférant à la levure une résistance à la généticine n'a pas permis de détecter cette aspartylation incorrecte, en revanche, le suivi du protéome de la levure lorsque l'AspRS est surexprimée a établi les conditions d'accumulation de l'AspRS dans la cellule suggérant l'existence d'un verrou supplémentaire pour contenir l'aspartylation et assurer la survie de la cellule.Accurate translation of genetic information necessitates the tuned expression of a large group of genes. Amongst them, controlled expression of the enzymes catalyzing the aminoacylation of tRNAs, the aminoacyl-tRNA synthetases (aaRS), is essential to insure translational fidelity. Here, it is shown that expression of AspRS is regulated in Saccharomyces cerevisiae by a feedback mechanism, that necessitates the binding of AspRS to its messenger RNA. The correlation between AspRS expression and mRNAAspRS and tRNAAsp concentrations, as well as the presence of AspRS in the nucleus, suggest an original regulation mechanism. It is proposed that the surplus of AspRS, not sequestered by tRNAAsp, is imported in the nucleus where it binds to mRNAAspRS and thus inhibits its accumulation.We have established the folding of the 300-nucleotides long 5' end of mRNAApRS and identified the structural signals involved in the regulation process. We propose that the mRNAAspRS fragment folds in two independent and symmetrically structured domains spaced by two single-stranded connectors. Domain I displays a tRNAAsp anticodon-like stem-loop structure that is restricted in domain II to a short double-stranded helix. The overall mRNA structure, based on enzymatic and chemical probing, support a model where each monomer of yeast AspRS binds one individual domain and recognizes the mRNA structure like it recognizes its cognate tRNAAsp.Finally, the consequences of an increased concentration of AspRS in the cell have been tested. In vitro, high AspRS concentrations lead to mis-aspartylation of tRNAAsn and tRNAGlu. In vivo, the design of a reporter gene conferring an antibiotic resistance, dependent on mischarged tRNAs, did not allow to detect any cross aminoacylation. However, the proteomic analysis of yeasts overexpressing AspRS pointed out the conditions of AspRS accumulation in the cell by detecting the presence of an additional control mechanism at the post-translational level.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Optimization of fluorogenic RNA-based biosensors using droplet-based microfluidic ultrahigh-throughput screening

    Get PDF
    International audienceBiosensors are biological molecules able to detect and report the presence of a target molecule by the emission of a signal. Nucleic acids are particularly appealing for the design of such molecule since their great structural plasticity makes them able to specifically interact with a wide range of ligands and their structure can rearrange upon recognition to trigger a reporting event. A biosensor is typically made of three main domains: a sensing domain that is connected to a reporting domain via a communication module in charge of transmitting the sensing event through the molecule. The communication module is therefore an instrumental element of the sensor. This module is usually empirically developed through a trial-and-error strategy with the testing of only a few combinations judged relevant by the experimenter. In this work, we introduce a novel method combining the use of droplet-based microfluidics and next generation sequencing. This method allows to functionally characterize up to a million of different sequences in a single set of experiments and, by doing so, to exhaustively test every possible sequence permutations of the communication module. Here, we demonstrate the efficiency of the approach by isolating a set of optimized RNA biosensors able to sense theophylline and to convert this recognition into fluorescence emission

    tRNA-balanced expression of a eukaryal aminoacyl-tRNA synthetase by an mRNA-mediated pathway

    No full text
    Aminoacylation of transfer RNAs is a key step during translation. It is catalysed by the aminoacyl-tRNA synthetases (aaRSs) and requires the specific recognition of their cognate substrates, one or several tRNAs, ATP and the amino acid. Whereas the control of certain aaRS genes is well known in prokaryotes, little is known about the regulation of eukaryotic aaRS genes. Here, it is shown that expression of AspRS is regulated in yeast by a feedback mechanism that necessitates the binding of AspRS to its messenger RNA. This regulation leads to a synchronized expression of AspRS and tRNA(Asp). The correlation between AspRS expression and mRNA(AspRS) and tRNA(Asp) concentrations, as well as the presence of AspRS in the nucleus, suggests an original regulation mechanism. It is proposed that the surplus of AspRS, not sequestered by tRNA(Asp), is imported into the nucleus where it binds to mRNA(AspRS) and thus inhibits its accumulation

    Activity-Fed Translation (AFT) Assay: A New High-Throughput Screening Strategy for Enzymes in Droplets.

    No full text
    There is an increasing demand for the development of sensitive enzymatic assays compatible with droplet-based microfluidics. Here we describe an original strategy, activity-fed translation (AFT), based on the coupling of enzymatic activity to in vitro translation of a fluorescent protein. We show that methionine release upon the hydrolysis of phenylacetylmethionine by penicillin acylase enabled in vitro expression of green fluorescent protein. An autocatalytic setup where both proteins are expressed makes the assay highly sensitive, as fluorescence was detected in droplets containing single PAC genes. Adding a PCR step in the droplets prior to the assay increased the sensitivity further. The strategy is potentially applicable for any activity that can be coupled to the production of an amino acid, and as the microdroplet volume is small the use of costly reagents such as in vitro expression mixtures is not limiting for high-throughput screening projects

    Dichloromethane Degradation Pathway from Unsequenced Hyphomicrobium sp. MC8b Rapidly Explored by Pan-Proteomics

    Get PDF
    International audienceSeveral bacteria are able to degrade the major industrial solvent dichloromethane (DCM) by using the conserved dehalogenase DcmA, the only system for DCM degradation characterised at the sequence level so far. Using differential proteomics, we rapidly identified key determinants of DCM degradation for Hyphomicrobium sp. MC8b, an unsequenced facultative methylotrophic DCM-degrading strain. For this, we designed a pan-proteomics database comprising the annotated genome sequences of 13 distinct Hyphomicrobium strains. Compared to growth with methanol, growth with DCM induces drastic changes in the proteome of strain MC8b. Dichloromethane dehalogenase DcmA was detected by differential pan-proteomics, but only with poor sequence coverage, suggesting atypical characteristics of the DCM dehalogenation system in this strain. More peptides were assigned to DcmA by error-tolerant search, warranting subsequent sequencing of the genome of strain MC8b, which revealed a highly divergent set of dcm genes in this strain. This suggests that the dcm enzymatic system is less strongly conserved than previously believed, and that substantial molecular evolution of dcm genes has occurred beyond their horizontal transfer in the bacterial domain. Our study showed the power of pan-proteomics for quick characterization of new strains belonging to branches of the Tree of Life that are densely genome-sequenced
    corecore