14 research outputs found

    Tolerance of triazine‐resistant and susceptible biotypes of three weeds to heat stress: a fluorescence study

    No full text
    The photosynthetic performance of Solarium nigrum L. Poa annua L. and Chenopodium album L. resistant to triazines was investigated in order to determine whether the alteration of the 32‐kD protein of photosystem (PS) II changed the ability to oxidize the PSII primary quinone acceptor QA. The effect of heat stress on the photochemistry of the resistant biotypes and the susceptible biotypes was also compared. The weeds were screened with the in‐vivo modulated chlorophyll fluorescence device to measure the photochemical component of fluorescence quenching (qQ), which provided semi‐quantitative information on the redox state of QA. At 25°C, an increase in the amplitude of the parameter 1‐qQ, which reflected the reduced state of QA, was observed in all resistant biotypes, compared to the susceptible wild biotypes. This was attributable to a shift in the equilibrium between QA− and QB (the PSII secondary quinone acceptor) in favour of QA. A heat stress of 35°C did not increase the level of reduced QA, except in the resistant biotypes of Poa annua. The photochemical activity of the two types of leaves exposed to increasingly high temperatures (25–65°C) indicated that quinone oxidation was more affected by heat stress in mutant resistant biotypes than in the susceptible biotypes. The quinone reoxidation was nullified at 60, 56 and 60°C, respectively, for susceptible biotypes of Solatium nigrum, Poa annua and Chenopodium album, and at 56, 48 and 54°C, respectively, for the three resistant biotypes. Heat also induced changes in the dark fluorescence F0, an indicator of the heat sensitivity of the light‐harvesting chlorophyll protein complex of PSII (LHCPII). The temperature dependence (25–70°C) of this fluorescence parameter confirmed the higher susceptibility of heat‐treated resistant leaves. Indeed, the temperatures of the peak of F0 (Tp) were 60, 55 and 62°C for susceptible Solanum nigrum, Poa annua and Chenopodium album, respectively. The Tp values for the three resistant biotypes were 55, 48 and 57°C, respectively. It is concluded that heat tolerance is related to differences in the organization of the chlorophyll antennae (LHCPII) between the two biotypes. Tolerance de biotypes sensibles et resistants aux triazines de 3 adventices au stress de la chaleur: une Ă©tude de fluorescence Les rendements photosynthĂ©tiques de Solanum nigrum L. Poa annua L. et Chenopodium album L. resistant aux triazines ont Ă©tĂ©Ă©tudiĂ©s en vue de dĂ©terminer dans quelle mesure l'altĂ©ration de la protĂ©ĂŻne 32 kD du photosystĂšme (PS) II, affecte la capacitĂ© d'oxyder l'accepteur quinonique primaire de PS II. QA L'influence d'un stress de chaleur sur la photochimie de biotypes rĂ©sistants et de biotypes sensibles a Ă©tĂ© comparĂ©e. Les mauvaises herbes ont Ă©tĂ© triĂ©es au moyen de la fluorescence de la chlorophylle in vivo, pour mesurer la composante photochimique de rĂ©duction de la fluorescence (qQ) qui donne une information semi quantitative de l'Ă©tat redox de QA. A 25 °C, une augmentation dans l'amplitude du paramĂštre 1‐qQ, qui reflĂšte l'Ă©tat rĂ©duit de QA a Ă©tĂ© observĂ©e chez les biotypes resistants encomparaison des biotypes sauvages sensibles. Ceci a Ă©tĂ© attribuĂ©Ă  une modification dans l'Ă©quilibre entre Q−A et QB (l'accepteur quinonique secondaire PS II), en faveur de QA. Un stress thermique de 35°C n'a pas augmentĂ© le niveau de QA rĂ©duit, sauf chez le biotype rĂ©sistant de Poa annua. L'activitĂ© photochimique des feuilles des 2 types exposĂ©es Ă  des hautes tempĂ©ratures croissantes (25 Ă  65°C) a montrĂ© que l'oxydation de la quinone Ă©tait plus affectĂ©e par le stress thermique chez les biotypes mutants rĂ©sistants que chez les biotypes sensibles. La rĂ©oxydation de la quinone Ă©tait annulĂ©e Ă  60, 56 et 60°C respectivement pour les biotypes sensibles de Solatium nigrum, Poa annua et Chenopodium album et Ă  56, 48 et 54°C respectivement pour les 3 biotypes rĂ©sistants. La chaleur a Ă©galement entrainĂ© des changements dans la fluorescence F0, un indicateur de la sensibilitĂ©Ă  la chaleur du complexe collecteur de lumiĂšre du PS II (LHCP II). La dĂ©pendance avec la tempĂ©rature (25–70°C) de ce paramĂštre de fluorescence a confirmĂ© la plus grande sensibilitĂ© des feuilles rĂ©sistantes soumises Ă  la chaleur. En effet, les tempĂ©ratures du pic de Fo (Tp) Ă©taient de 60, 55 et 62°C respectivement, pour les biotypes sensibles de Solanum nigrum, Poa annua et Chenopodium album. Les valeurs Tp pour les 3 biotypes rĂ©sistants Ă©taient respectivement de 55, 48 et 57°C. Il est conclu que la tolĂ©rance Ă  la chaleur est liĂ©e aux diffĂ©rences dans l'organisation des antennes chlorophylliennes (LHC P II) entre les 2 biotypes. Hitzetoleranz Triazin‐resistenter und ‐empfindlicher Biotypen von drei Unkrautarten Die photosynthetische Leistung Triazin‐resistenter Biotypen von Solanum nigrum L. Poa annua L. und Chenopodium album L. wurde dahingehend untersucht, ob eine VerĂ€nderung des 32‐kD‐Eiweisses des Pigmentsystems II (PII) die FĂ€higkeit Ă€nderte, den primĂ€ren Quinon‐Akzeptor QA des PII zu oxidieren. Auch die Wirkung einer Hitzebehandlung auf die photochemischen Reaktionen resistenter und empfindlicher Biotypen wurde verglichen. Die UnkrĂ€uter wurden in vivo mit einem Chlorophyll‐Fluorimeter gescreent, um die photochemische Komponente der Fluoreszenz‐Auslösung (qQ) zu messen, die eine semiquantitative Information ĂŒber den Redox‐Zustand des QA lieferte. Die Amplitude des Parameters l‐qQ, der den reduzierten Zustand des QA widerspiegelte, nahm bei 25°C bei allen resistenten Biotypen im Vergleich zu den empfindlichen zu. Dies konnte einer Verschiebung des Gleichgewichts zwischen Q−A und QB (dem sekundĂ€ren Quinon‐Akzeptor QA des PII) zugunsten des QA zugeordnet werden. Eine Hitzebehandlung mit 35°C erhöhte den reduzierten QA nicht, außer bei resistenten Biotypen von Poa annua. Die photochemische AktivitĂ€t von BlĂ€ttern der beiden Typen, die steigenden Temperaturen von 25 bis 65°C unterworden wurden, zeigte, daß die Quinon‐Oxidation bei den resitenten Biotypen durch den Hitzestreß stĂ€rker beeinflußt wurde als bei den empfindlichen. Die Quinon‐Reoxidation wurde bei den empfindlichen Biotypen von Solanum nigrum, Poa annua und Chenopodium album bei 60, 56 bzw. 60°C aufgehoben, bei den resistenten bei 56, 48 bzw. 54°C. Hitze fĂŒhrte auch zu Änderungen der Dunkel‐Fluoreszenz Fo, einem Indikator der Hitzeempfindlichkeit des lichtabsorbierenden Chlorophyll‐Eiweißkomplexes des PII (LHCPII). Die TemperaturabhĂ€ngigkeit dieses Fluoreszenz‐Parameters bei 25 bis 70°C bestĂ€tigte die höhere Empfindlichkeit hitzebehandelter BlĂ€tter resistenter Pflanzen. So waren Fo‐Peaks bei empfindlichen Solanum nigrum, Poa annua und Chenopodium album bei 60, 55 bzw. 62°C, bei resistenten bei 55, 48 bzw. 57°C festzustellen. Daraus wurde geschlossen, daß die Hitzetoleranz auf Unterschieden im Aufbau des lichtabsorbierenden Pigmentsystems LHCPII der beiden Biotypen beruht. Copyright © 1992, Wiley Blackwell. All rights reservedSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Estimating subsoil resistance to nitrate leaching from easily measurable pedological properties

    No full text
    Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of SĂŁo Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition

    The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review

    Get PDF
    It is estimated that more than 95% of organic production is based on crop varieties that were bred for the conventional high-input sector. Recent studies have shown that such varieties lack important traits required under organic and low-input production conditions. This is primarily due to selection in conventional breeding programmes being carried out in the background of high inorganic fertilizer and crop protection inputs. Also, some of the traits (e.g., semi-dwarf genes) that were introduced to address problems like lodging in cereals in high-input systems were shown to have negative side-effects (reduced resistance to diseases such as Septoria, lower protein content and poorer nutrient-use efficiency) on the performance of varieties under organic and low-input agronomic conditions. This review paper, using wheat, tomato and broccoli as examples, describes (1) the main traits required under low-input conditions, (2) current breeding programmes for organic, low-input agriculture, (3) currently available breeding and/or selection approaches, and (4) the benefits and potential negative side-effects of different breeding methodologies and their relative acceptability under organic farming principles. © 2010 Royal Netherlands Society for Agricultural Sciences. Published by Elsevier B.V. All rights reserved
    corecore