34 research outputs found

    How to do an evaluation: pitfalls and traps

    Get PDF
    The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used

    How to do an evaluation: pitfalls and traps

    Get PDF
    The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used

    Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug.</p> <p>Methods</p> <p>The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied <it>in vitro </it>by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1.</p> <p>Results</p> <p>Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic effects against MCF-7 cell proliferation.</p> <p>Conclusions</p> <p>The study provided evidence suggesting that griseofulvin shares its binding site in tubulin with paclitaxel and kinetically suppresses microtubule dynamics in a similar manner. The results revealed the antimitotic mechanism of action of griseofulvin and provided evidence suggesting that griseofulvin alone and/or in combination with vinblastine may have promising role in breast cancer chemotherapy.</p

    Cross-Protective Potential of a Novel Monoclonal Antibody Directed against Antigenic Site B of the Hemagglutinin of Influenza A Viruses

    Get PDF
    The hemagglutinin (HA) of influenza A viruses has been classified into sixteen distinct subtypes (H1–H16) to date. The HA subtypes of influenza A viruses are principally defined as serotypes determined by neutralization or hemagglutination inhibition tests using polyclonal antisera to the respective HA subtypes, which have little cross-reactivity to the other HA subtypes. Thus, it is generally believed that the neutralizing antibodies are not broadly cross-reactive among HA subtypes. In this study, we generated a novel monoclonal antibody (MAb) specific to HA, designated MAb S139/1, which showed heterosubtypic cross-reactive neutralization and hemagglutination inhibition of influenza A viruses. This MAb was found to have broad reactivity to many other viruses (H1, H2, H3, H5, H9, and H13 subtypes) in enzyme-linked immunosorbent assays. We further found that MAb S139/1 showed neutralization and hemagglutination-inhibition activities against particular strains of H1, H2, H3, and H13 subtypes of influenza A viruses. Mutant viruses that escaped neutralization by MAb S139/1 were selected from the A/Aichi/2/68 (H3N2), A/Adachi/2/57 (H2N2), and A/WSN/33 (H1N1) strains, and sequence analysis of the HA genes of these escape mutants revealed amino acid substitutions at positions 156, 158, and 193 (H3 numbering). A molecular modeling study showed that these amino acids were located on the globular head of the HA and formed a novel conformational epitope adjacent to the receptor-binding domain of HA. Furthermore, passive immunization of mice with MAb S139/1 provided heterosubtypic protection. These results demonstrate that MAb S139/1 binds to a common antigenic site shared among a variety of HA subtypes and neutralizes viral infectivity in vitro and in vivo by affecting viral attachment to cells. The present study supports the notion that cross-reactive antibodies play some roles in heterosubtypic immunity against influenza A virus infection, and underscores the potential therapeutic utility of cross-reactive antibodies against influenza

    SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase

    Get PDF
    SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature

    Single crystal structural characterization of trichlorotetrapyridylbismuth(III) and its pyridine solvate

    Get PDF
    Pentagonal bipyramidal (C5H5N)4BiCl3 and its pyridine solvate are reported. The (C5H5N)4BiCl3 complex exhibits both intra- and intermolecular - stacking, while the pyridine solvate does not, but does contain four formula units in the asymmetric unit. A comparison between the coordination geometry of these solvation isomers and a series of isostructural lanthanide complexes is discussed
    corecore