53 research outputs found

    C4 photosynthesis boosts growth by altering physiology, allocation and size.

    Get PDF
    C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations that have evolved more than 60 times to boost carbon uptake compared with the ancestral C3 photosynthetic type(1-3). Although C4 photosynthesis has the potential to drive faster growth rates(4,5), experiments directly comparing C3 and C4 plants have not shown consistent effects(1,6,7). This is problematic because differential growth is a crucial element of ecological theory(8,9) explaining C4 savannah responses to global change(10,11), and research to increase C3 crop productivity by introducing C4 photosynthesis(12). Here, we resolve this long-standing issue by comparing growth across 382 grass species, accounting for ecological diversity and evolutionary history. C4 photosynthesis causes a 19-88% daily growth enhancement. Unexpectedly, during the critical seedling establishment stage, this enhancement is driven largely by a high ratio of leaf area to mass, rather than fast growth per unit leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. Our data demonstrate a general suite of functional trait divergences between C3 and C4 species, which simultaneously drive faster growth and greater investment in water and nutrient acquisition, with important ecological and agronomic implications

    Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects

    Full text link

    Reinforcement of reproductive isolation between adjacent populations in the Park Grass Experiment

    No full text
    It has been debated, ever since Charles Darwin and Alfred Russell Wallace disagreed about the matter, whether natural selection plays a role in reinforcing reproductive isolation during the earliest stages of speciation. Recent theory suggests that it can do so, but until now the empirical evidence has conspicuously lacked a case in which reinforcement has actually been observed to split a population. We show that this has occurred at least once in populations of the grass Anthoxanthum odoratum growing in the Park Grass Experiment where flowering time has shifted at the boundaries between plots. As a consequence, gene flow via pollen has been severely limited and adjacent populations that had a common origin at the start of the experiment in 1856 have now diverged at neutral marker loci
    • …
    corecore