1,497 research outputs found

    Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment

    Get PDF
    This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy

    Cognitive and behavioral predictors of light therapy use

    Get PDF
    Objective: Although light therapy is effective in the treatment of seasonal affective disorder (SAD) and other mood disorders, only 53-79% of individuals with SAD meet remission criteria after light therapy. Perhaps more importantly, only 12-41% of individuals with SAD continue to use the treatment even after a previous winter of successful treatment. Method: Participants completed surveys regarding (1) social, cognitive, and behavioral variables used to evaluate treatment adherence for other health-related issues, expectations and credibility of light therapy, (2) a depression symptoms scale, and (3) self-reported light therapy use. Results: Individuals age 18 or older responded (n = 40), all reporting having been diagnosed with a mood disorder for which light therapy is indicated. Social support and self-efficacy scores were predictive of light therapy use (p's<.05). Conclusion: The findings suggest that testing social support and self-efficacy in a diagnosed patient population may identify factors related to the decision to use light therapy. Treatments that impact social support and self-efficacy may improve treatment response to light therapy in SAD. © 2012 Roecklein et al

    π+\pi^+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γp→nπ+\gamma p \to n \pi^+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure

    Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Full text link
    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR

    Search for the Θ+\Theta^+ pentaquark in the reaction γd→pK−K+n\gamma d \to p K^- K^+ n

    Full text link
    A search for the \thp in the reaction γd→pK−K+n\gamma d \to pK^-K^+n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow \thp resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on \thp production in the mass range of 1.52 to 1.56 GeV/c2^2 for the γd→pK−Θ+\gamma d \to pK^-\Theta^+ reaction is 0.3 nb (95% CL). This upper limit depends on assumptions made for the mass and angular distribution of \thp production. Using \lamstar production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary γn→K−Θ+\gamma n \to K^-\Theta^+ reaction is estimated to be a factor of 10 higher, {\it i.e.}, ∼3\sim 3 nb (95% CL).Comment: 5 figures, submitted to PRL, revised for referee comment

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure

    Forecasting with Big Data: A Review

    Get PDF
    Big Data is a revolutionary phenomenon which is one of the most frequently discussed topics in the modern age, and is expected to remain so in the foreseeable future. In this paper we present a comprehensive review on the use of Big Data for forecasting by identifying and reviewing the problems, potential, challenges and most importantly the related applications. Skills, hardware and software, algorithm architecture, statistical significance, the signal to noise ratio and the nature of Big Data itself are identified as the major challenges which are hindering the process of obtaining meaningful forecasts from Big Data. The review finds that at present, the fields of Economics, Energy and Population Dynamics have been the major exploiters of Big Data forecasting whilst Factor models, Bayesian models and Neural Networks are the most common tools adopted for forecasting with Big Data
    • …
    corecore