8,457 research outputs found

    ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma.

    Get PDF
    ZNF750 controls epithelial homeostasis by regulating epidermal-differentiation genes, a role underscored by its pathogenic mutations in esophageal squamous cell cancers (SCCs). However, the precise role of ZNF750 in SCC cell biology remains unclear. In this study, we report that ZNF750 is exclusively deleted, mutated and underexpressed in human SCCs, and low ZNF750 expression is associated with poor survival. Restoration of wildtype, but not mutant ZNF750 protein uniquely inhibited the malignant phenotypes of SCC cells both in vitro and in vivo. Notably, ZNF750 promoted the expression of a long non-coding RNA (TINCR), which mediated both cancer-inhibition and differentiation-induction effects of ZNF750. In addition, ZNF750 potently suppressed cell migration by directly inhibiting the transactivation of LAMC2. Together, our findings characterize ZNF750 as a crucial SCC-specific suppressor and uncover its novel anticancer-associated functions

    Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO2, O3, PM10 and PM2.5 for 2001-2010

    Get PDF
    This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  ×  5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus of the model–measurement comparison statistics presented here was on the health-relevant metrics of annual and daily means of NO2, O3, PM2. 5, and PM10 (daily maximum 8 h running mean for O3). The comparison was temporally and spatially comprehensive, covering a 10-year period (2 years for PM2. 5) and all non-roadside measurement data from the UK national reference monitor network, which applies consistent operational and QA/QC procedures for each pollutant (44, 47, 24, and 30 sites for NO2, O3, PM2. 5, and PM10, respectively). Two important statistics highlighted in the literature for evaluation of air quality model output against policy (and hence health)-relevant standards – correlation and bias – together with root mean square error, were evaluated by site type, year, month, and day-of-week. Model–measurement statistics were generally better than, or comparable to, values that allow for realistic magnitudes of measurement uncertainties. Temporal correlations of daily concentrations were good for O3, NO2, and PM2. 5 at both rural and urban background sites (median values of r across sites in the range 0.70–0.76 for O3 and NO2, and 0.65–0.69 for PM2. 5), but poorer for PM10 (0.47–0.50). Bias differed between environments, with generally less bias at rural background sites (median normalized mean bias (NMB) values for daily O3 and NO2 of 8 and 11 %, respectively). At urban background sites there was a negative model bias for NO2 (median NMB  =  −29 %) and PM2. 5 (−26 %) and a positive model bias for O3 (26 %). The directions of these biases are consistent with expectations of the effects of averaging primary emissions across the 5 km  ×  5 km model grid in urban areas, compared with monitor locations that are more influenced by these emissions (e.g. closer to traffic sources) than the grid average. The biases are also indicative of potential underestimations of primary NOx and PM emissions in the model, and, for PM, with known omissions in the model of some PM components, e.g. some components of wind-blown dust. There were instances of monthly and weekday/weekend variations in the extent of model–measurement bias. Overall, the greater uniformity in temporal correlation than in bias is strongly indicative that the main driver of model–measurement differences (aside from grid versus monitor spatial representivity) was inaccuracy of model emissions – both in annual totals and in the monthly and day-of-week temporal factors applied in the model to the totals – rather than simulation of atmospheric chemistry and transport processes. Since, in general for epidemiology, capturing correlation is more important than bias, the detailed analyses presented here support the use of data from this model framework in air pollution epidemiology

    Assessing the Health of Richibucto Estuary with the Latent Health Factor Index

    Get PDF
    The ability to quantitatively assess the health of an ecosystem is often of great interest to those tasked with monitoring and conserving ecosystems. For decades, research in this area has relied upon multimetric indices of various forms. Although indices may be numbers, many are constructed based on procedures that are highly qualitative in nature, thus limiting the quantitative rigour of the practical interpretations made from these indices. The statistical modelling approach to construct the latent health factor index (LHFI) was recently developed to express ecological data, collected to construct conventional multimetric health indices, in a rigorous quantitative model that integrates qualitative features of ecosystem health and preconceived ecological relationships among such features. This hierarchical modelling approach allows (a) statistical inference of health for observed sites and (b) prediction of health for unobserved sites, all accompanied by formal uncertainty statements. Thus far, the LHFI approach has been demonstrated and validated on freshwater ecosystems. The goal of this paper is to adapt this approach to modelling estuarine ecosystem health, particularly that of the previously unassessed system in Richibucto in New Brunswick, Canada. Field data correspond to biotic health metrics that constitute the AZTI marine biotic index (AMBI) and abiotic predictors preconceived to influence biota. We also briefly discuss related LHFI research involving additional metrics that form the infaunal trophic index (ITI). Our paper is the first to construct a scientifically sensible model to rigorously identify the collective explanatory capacity of salinity, distance downstream, channel depth, and silt-clay content --- all regarded a priori as qualitatively important abiotic drivers --- towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for publication in PLoS One. See Journal reference and DOI belo

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
    corecore