679 research outputs found

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Cleavage of von Willebrand Factor by Granzyme M Destroys Its Factor VIII Binding Capacity

    Get PDF
    Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF

    Calcium modulates force sensing by the von Willebrand factor A2 domain

    Get PDF
    von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. VWF potency critically depends on multimer size, which is regulated by a feedback mechanism involving shear-induced unfolding of the VWF-A2 domain and cleavage by the metalloprotease ADAMTS-13. Here we report crystallographic and single-molecule optical tweezers data on VWF-A2 providing mechanistic insight into calcium-mediated stabilization of the native conformation that protects A2 from cleavage by ADAMTS-13. Unfolding of A2 requires higher forces when calcium is present and primarily proceeds through a mechanically stable intermediate with non-native calcium coordination. Calcium further accelerates refolding markedly, in particular, under applied load. We propose that calcium improves force sensing by allowing reversible force switching under physiologically relevant hydrodynamic conditions. Our data show for the first time the relevance of metal coordination for mechanical properties of a protein involved in mechanosensing

    Severe Plasmodium falciparum Malaria Is Associated with Circulating Ultra-Large von Willebrand Multimers and ADAMTS13 Inhibition

    Get PDF
    Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF∶Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF∶CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005). This increased VWF∶CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF∶Ag and VWF∶CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (∼55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor

    Granular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress

    Get PDF
    α-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of α-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000×g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of α-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation

    Bleeding from gastrointestinal angioectasias is not related to bleeding disorders - a case control study

    Get PDF
    n/aOriginal Publication:Charlotte M Hoog, Olle Brostrom, Tomas Lindahl, Andreas Hillarp, Gerd Larfars and Urban Sjoqvist, Bleeding from gastrointestinal angioectasias is not related to bleeding disorders - a case control study, 2010, BMC GASTROENTEROLOGY, (10), 113.http://dx.doi.org/10.1186/1471-230X-10-113Licensee: BioMed Centralhttp://www.biomedcentral.com

    Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor

    Get PDF
    Mechanisms by which blood cells sense shear stress are poorly characterized. In platelets, glycoprotein (GP)Ib-IX receptor complex has been long suggested to be a shear sensor and receptor. Recently, a relatively unstable and mechanosensitive domain in the GPIba subunit of GPIb-IX was identified. Here we show that binding of its ligand, von Willebrand factor, under physiological shear stress induces unfolding of this mechanosensory domain (MSD) on the platelet surface. The unfolded MSD, particularly the juxtamembrane € Trigger' sequence therein, leads to intracellular signalling and rapid platelet clearance. These results illustrate the initial molecular event underlying platelet shear sensing and provide a mechanism linking GPIb-IX to platelet clearance. Our results have implications on the mechanism of platelet activation, and on the pathophysiology of von Willebrand disease and related thrombocytopenic disorders. The mechanosensation via receptor unfolding may be applicable for many other cell adhesion receptors

    Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The platelet P2Y<sub>12 </sub>receptor plays a key role in platelet activation. The H2 haplotype of the P2Y<sub>12 </sub>receptor gene (<it>P2RY12</it>) has been found to be associated with maximal aggregation response to adenosine diphosphate (ADP) and with increased risk for peripheral arterial disease. No data are available on its association with coronary artery disease (CAD).</p> <p>Methods </p> <p>The H2 haplotype of the <it>P2RY12 </it>was determined in 1378 unrelated patients of both sexes selected according to the presence of significant coronary artery disease (CAD group) or having normal coronary angiogram at cardiac catheterization (CAD-free group). Significant coronary artery disease was angiographically determined, and was defined as a greater than 50% visually estimated luminal diameter stenosis in at least one major epicardial coronary artery.</p> <p>Results</p> <p>In the studied population 71.9% had CAD (n = 991) and 28.1% had normal coronary angiogram (n = 387). H2 haplotype carriers were more frequent in the CAD group (p = 0.03, OR = 1.36, 95%CI = 1.02–1.82). The H2 haplotype was significantly associated with CAD in non-smokers (p = 0.007, OR = 1.83 95%CI = 1.17–2.87), but not in smokers. The association remained significant after adjustment for other covariates (age, triglycerides, HDL, hypertension, diabetes) by multivariate logistic regression (p = 0.004, OR = 2.32 95%CI = 1.30–4.15).</p> <p>Conclusion</p> <p>Gene sequence variations of the P2Y<sub>12 </sub>receptor gene are associated with the presence of significant CAD, particularly in non-smoking individuals.</p
    corecore