447 research outputs found
An efficient mixed variational reduced order model formulation for non-linear analyses of elastic shells
The Koiter-Newton method had recently demonstrated a superior performance for non-linear analyses of structures, compared to traditional path-following strategies. The method follows a predictor-corrector scheme to trace the entire equilibrium path. During a predictor step a reduced order model is constructed based on Koiter's asymptotic post-buckling theory which is followed by a Newton iteration in the corrector phase to regain the equilibrium of forces.
In this manuscript, we introduce a robust mixed solid-shell formulation to further enhance the efficiency of stability analyses in various aspects. We show that a Hellinger-Reissner variational formulation facilitates the reduced order model construction omitting an expensive evaluation of the inherent fourth order derivatives of the strain energy. We demonstrate that extremely large step sizes with a reasonable out-of-balance residual can be obtained with substantial impact on the total number of steps needed to trace the complete equilibrium path. More importantly, the numerical effort of the corrector phase involving a Newton iteration of the full order model is drastically reduced thus revealing the true strength of the proposed formulation. We study a number of problems from engineering and compare the results to the conventional approach in order to highlight the gain in numerical efficiency for stability problems
The key aspects of innovation-oriented regional industrial and economic policy
Integration processes taking place in the economy, the new requirements to enhance the effectiveness of production during international competition as well as the need to ensure the social conditions lead to the development and implementation of innovation-oriented regional industrial and economic policy, which in its turn, requires adopting substantial organizational and economic recommendations
Atomically precise placement of single dopants in Si
We demonstrate the controlled incorporation of P dopant atoms in Si(001), presenting a new path toward the creation of atomic-scale electronic devices. We present a detailed study of the interaction of PH3 with Si(001) and show that it is possible to thermally incorporate P atoms into Si(001) below the H-desorption temperature. Control over the precise spatial location at which P atoms are incorporated was achieved using STM H lithography. We demonstrate the positioning of single P atoms in Si with similar to1 nm accuracy and the creation of nanometer wide lines of incorporated P atoms
MillimeterâWave WISP Search with Coherent LightâShiningâThroughâaâWall Toward the STAX Project
A dark photon is one of the simplest extensions of the Standard Model of particle physics and can be a dark matter candidate. Dark photons kinetically mix with ordinary photons. The mass range from 10 to 10 eV of such dark photons is underconstrained by laboratory-based experiments and a new search is therefore motivated. In this mass range, dark photons behave like waves rather than particles and the corresponding electromagnetic waves are in the millimeter-wave range. The technical difficulties of the millimeter waves have prevented so far dark photon experiments in this mass range. The use of coherent millimeter waves to search for dark photons in a Light-Shining-through-a-Wall (LSW) experiment is proposed. The merits and limitations of coherent wave detection are clarified and the potential of single photon sensors at microwaves is investigated. Development of millimeter-wave technology is not only limited to dark photons. Technically, an experiment for dark photons by using electromagnetic waves resembles that for axions, another light dark matter candidate, with static magnetic fields. This paper represents an essential step toward axion LSW in the millimeter-wave range (Sub-THz-AXion experiment; STAX) as a potential successor of an on-going experiment in infrared
New results on rewrite-based satisfiability procedures
Program analysis and verification require decision procedures to reason on
theories of data structures. Many problems can be reduced to the satisfiability
of sets of ground literals in theory T. If a sound and complete inference
system for first-order logic is guaranteed to terminate on T-satisfiability
problems, any theorem-proving strategy with that system and a fair search plan
is a T-satisfiability procedure. We prove termination of a rewrite-based
first-order engine on the theories of records, integer offsets, integer offsets
modulo and lists. We give a modularity theorem stating sufficient conditions
for termination on a combinations of theories, given termination on each. The
above theories, as well as others, satisfy these conditions. We introduce
several sets of benchmarks on these theories and their combinations, including
both parametric synthetic benchmarks to test scalability, and real-world
problems to test performances on huge sets of literals. We compare the
rewrite-based theorem prover E with the validity checkers CVC and CVC Lite.
Contrary to the folklore that a general-purpose prover cannot compete with
reasoners with built-in theories, the experiments are overall favorable to the
theorem prover, showing that not only the rewriting approach is elegant and
conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page
Designing Cathodes and Cathode Active Materials for SolidâState Batteries
Solid-state batteries (SSBs) currently attract great attention as a potentially safe electrochemical high-energy storage concept. However, several issues still prevent SSBs from outperforming today\u27s lithium-ion batteries based on liquid electrolytes. One major challenge is related to the design of cathode active materials (CAMs) that are compatible with the superionic solid electrolytes (SEs) of interest. This perspective, gives a brief overview of the required properties and possible challenges for inorganic CAMs employed in SSBs, and describes state-of-the art solutions. In particular, the issue of tailoring CAMs is structured into challenges arising on the cathode-, particle-, and interface-level, related to microstructural, (chemo-)mechanical, and (electro-)chemical interplay of CAMs with SEs, and finally guidelines for future CAM development for SSBs are proposed
Weak localization and electron-electron interactions in Indium-doped ZnO nanowires
Single crystal ZnO nanowires doped with indium are synthesized via the
laser-assisted chemical vapor deposition method. The conductivity of the
nanowires is measured at low temperatures in magnetic fields both perpendicular
and parallel to the wire axes. A quantitative fit of our data is obtained,
consistent with the theory of a quasi-one-dimensional metallic system with
quantum corrections due to weak localization and electron-electron
interactions. The anisotropy of the magneto-conductivity agrees with theory.
The two quantum corrections are of approximately equal magnitude with
respective temperature dependences of T^-1/3 and T^-1/2. The alternative model
of quasi-two-dimensional surface conductivity is excluded by the absence of
oscillations in the magneto-conductivity in parallel magnetic fields.Comment: 13 pages, Corrected forma
Scanning-probe spectroscopy of semiconductor donor molecules
Semiconductor devices continue to press into the nanoscale regime, and new
applications have emerged for which the quantum properties of dopant atoms act
as the functional part of the device, underscoring the necessity to probe the
quantum structure of small numbers of dopant atoms in semiconductors[1-3].
Although dopant properties are well-understood with respect to bulk
semiconductors, new questions arise in nanosystems. For example, the quantum
energy levels of dopants will be affected by the proximity of nanometer-scale
electrodes. Moreover, because shallow donors and acceptors are analogous to
hydrogen atoms, experiments on small numbers of dopants have the potential to
be a testing ground for fundamental questions of atomic and molecular physics,
such as the maximum negative ionization of a molecule with a given number of
positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants
has been observed in transport studies[6,7]. In addition, Geim and coworkers
identified resonances due to two closely spaced donors, effectively forming
donor molecules[8]. Here we present capacitance spectroscopy measurements of
silicon donors in a gallium-arsenide heterostructure using a scanning probe
technique[9,10]. In contrast to the work of Geim et al., our data show
discernible peaks attributed to successive electrons entering the molecules.
Hence this work represents the first addition spectrum measurement of dopant
molecules. More generally, to the best of our knowledge, this study is the
first example of single-electron capacitance spectroscopy performed directly
with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages,
3 figures, 5 supplementary figure
Changes in Plant Species Richness Induce Functional Shifts in Soil Nematode Communities in Experimental Grassland
Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions
- âŠ