15 research outputs found

    Traits traded off

    Get PDF
    The course of evolution is restricted by constraints. A special type of constraint is a trade-off where different traits are negatively correlated. In this situation a mutant type that shows an improvement in one trait suffers from a decreased performance through another trait. In a fixed fitness landscape evolution is expected to come up with a compromise of the competing fitness components that is optimal in the sense that no other realized compromise can be more successful. However, in most ecological settings the resident community will form a vital part of the selective environment experienced by a mutant. In this case each component in a fitness trade-off can be affected by the phenotype of the conspecifics, which causes the fitness landscape to change as evolution proceeds. We refer to selection in a changing fitness landscape as frequency dependent. With frequency dependence the concept of optimality cannot be applied anymore. This thesis explores, by means of mathematical models, how frequency dependence can be detected and how it alters the evolutionary dynamics of traits that are coupled by a trade-off. Special attention is paid to the phenomenon of evolutionary branching where directional selection drives a population's trait distribution into a region of the trait space where selection turns disruptive.Supported by the Research Council for Earth and Life Sciences (ALW), which is subsidized by the Netherlands Organisation for Scientific Research (NWO)UBL - phd migration 201

    The components of directional and disruptive selection in heterogeneous group-structured populations

    Get PDF
    We derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-structured population for a general class of models. In particular, we assume that each group in the population can be in one of a finite number of states, where states can affect group size and/or other environmental variables, at a given time. Using up to second-order perturbation expansions of the invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection coefficients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions include first- and second-order perturbations of individual fitness (expected number of settled offspring produced by an individual, possibly including self through survival); the first-order perturbation of the stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary distribution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness (defined as the expected number of settled offspring of an individual for which k - 1 randomly chosen neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation. We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms individual k-fitnesses with k = 1, 2, 3 only. This representation has two important benefits. First, it allows for a significant reduction in the dimensions of the system of equations describing the mutant dynamics that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads to a biologically meaningful interpretation of their components. As an application of our methodology, we analyze directional and disruptive selection in a lottery model with either hard or soft selection and show that many previous results about selection in group-structured populations can be reproduced as special cases of our model. (C) 2020 The Authors. Published by Elsevier Ltd

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Data from: The efficacy of good genes sexual selection under environmental change

    No full text
    Sexual selection can promote adaptation if sexually selected traits are reliable indicators of genetic quality. Moreover, models of good genes sexual selection suggest that, by operating more strongly in males than in females, sexual selection may purge deleterious alleles from the population at a low demographic cost, offering an evolutionary benefit to sexually reproducing populations. Here, we investigate the effect of good genes sexual selection on adaptation following environmental change. We show that the strength of sexual selection is often weakened relative to fecundity selection, reducing the suggested benefit of sexual reproduction. This result is a consequence of incorporating a simple and general mechanistic basis for how sexual selection operates under different mating systems, rendering selection on males frequency-dependent and dynamic with respect to the degree of environmental change. Our model illustrates that incorporating the mechanism of selection is necessary to predict evolutionary outcomes and highlights the need to substantiate previous theoretical claims with further work on how sexual selection operates in changing environments

    Mathematica code.

    No full text
    The mathematica code used to build the model described in that article

    The evolution of resource specialization through frequency-dependent and frequency-independent

    No full text
    abstract: Levins's fitness set approach has shaped the intuition of many evolutionary ecologists about resource specialization: if the set of possible phenotypes is convex, a generalist is favored, while either of the two specialists is predicted for concave phenotype sets. An important aspect of Levins's approach is that it explicitly excludes frequency-dependent selection. Frequency dependence emerged in a series of models that studied the degree of character displacement of two consumers coexisting on two resources. Surprisingly, the evolutionary dynamics of a single consumer type under frequency dependence has not been studied in detail. We analyze a model of one evolving consumer feeding on two resources and show that, depending on the trait considered to be subject to evolutionary change, selection is either frequency independent or frequency dependent. This difference is explained by the effects different foraging traits have on the consumer-resource interactions. If selection is frequency dependent, then the population can become dimorphic through evolutionary branching at the trait value of the generalist. Those traits with frequency-independent selection, however, do indeed follow the predictions based on Levins's fitness set approach. This dichotomy in the evolutionary dynamics of traits involved in the same foraging process was not previously recognized
    corecore