22 research outputs found

    Homoplastic microinversions and the avian tree of life

    Get PDF
    Background: Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasyfree evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results: We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions: Microinversions can provide valuable phylogenetic information, although power analysis indicate

    Lung transplantation for pulmonary fibrosis in dyskeratosis congenita: Case Report and systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyskeratosis congenita (DC) is a progressive, multi-system, inherited disorder of telomere biology with high risks of morbidity and mortality from bone marrow failure, hematologic malignancy, solid tumors and pulmonary fibrosis. Hematopoietic stem cell transplantation (HSCT) can cure the bone marrow failure, but it does not eliminate the risks of other complications, for which life-long surveillance is required. Pulmonary fibrosis is a progressive and lethal complication of DC.</p> <p>Case presentation</p> <p>In this report, we describe a patient with DC who developed pulmonary fibrosis seven years after HSCT for severe aplastic anemia, and was successfully treated with bilateral lung transplantation. We also performed a systematic literature review to understand the burden of pulmonary disease in patients with DC who did or did not receive an HSCT. Including our patient, we identified 49 DC patients with pulmonary disease (12 after HSCT and 37 without HSCT), and 509 with no reported pulmonary complications.</p> <p>Conclusion</p> <p>Our current case and literature review indicate that pulmonary morbidity is one of the major contributors to poor quality of life and reduced long-term survival in DC. We suggest that lung transplantation be considered for patients with DC who develop pulmonary fibrosis with no concurrent evidence of multi-organ failure.</p

    What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Rang

    Get PDF
    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks

    Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons

    Get PDF
    Abstract Background Polyploidy is a pervasive evolutionary feature of all flowering plants and some animals, leading to genetic and epigenetic changes that affect gene expression and morphology. DNA methylation changes can produce meiotically stable epialleles, which are transmissible through selection and breeding. However, the relationship between DNA methylation and polyploid plant domestication remains elusive. Results We report comprehensive epigenomic and functional analyses, including ~12 million differentially methylated cytosines in domesticated allotetraploid cottons and their tetraploid and diploid relatives. Methylated genes evolve faster than unmethylated genes; DNA methylation changes between homoeologous loci are associated with homoeolog-expression bias in the allotetraploids. Significantly, methylation changes induced in the interspecific hybrids are largely maintained in the allotetraploids. Among 519 differentially methylated genes identified between wild and cultivated cottons, some contribute to domestication traits, including flowering time and seed dormancy. CONSTANS (CO) and CO-LIKE (COL) genes regulate photoperiodicity in Arabidopsis. COL2 is an epiallele in allotetraploid cottons. COL2A is hypermethylated and silenced, while COL2D is repressed in wild cottons but highly expressed due to methylation loss in all domesticated cottons tested. Inhibiting DNA methylation activates COL2 expression, and repressing COL2 in cultivated cotton delays flowering. Conclusions We uncover epigenomic signatures of domestication traits during cotton evolution. Demethylation of COL2 increases its expression, inducing photoperiodic flowering, which could have contributed to the suitability of cotton for cultivation worldwide. These resources should facilitate epigenetic engineering, breeding, and improvement of polyploid crops

    Using eye tracking to understand consumer behaviour in garden centres

    Full text link

    In Vivo Models of Mechanical Loading

    No full text
    The skeleton fulfils its mechanical functions through structural organization and material properties of individual bones. It is stated that both cortical and trabecular morphology and mass can be (re)modelled in response to changes in mechanical strains engendered by load-bearing. To address this, animal models that enable the application of specific loads to individual bones have been developed. These are useful in defining how loading modulates (re)modeling and allow examination of the mechanisms that coordinate these events. This chapter describes how to apply mechanical loading to murine bones through points of articulation, which allows changes in endosteal, periosteal as well as trabecular bone to be revealed at multiple hierarchies, by a host of methodologies, including double fluorochrome labeling and computed tomography
    corecore